Etiket Arşivleri: Wine

Wine Production ( Yoann Chelin )

Wine Production
Yoann Chelin

Wine exportation in the world

Wine Production in the world :Top 10

Wine Production : location in France

Wine Production : Main Steps

Wine Production: Process

  1. Viticulture

  1. Harvesting

  1. Stemming/Crushing

  1. Fermentation

  1. Pressing

  1. Clarification

  1. Aging

  1. Bottleing

Les Grands Crus

Red Wine Presentation

A wine vintage is a year in which the grapes were harvested.
Red Wine is usually made from one or more varieties of the European species
Harmony has 3 criterion:
1.Weight
Power body wine.
Acid: High acidic wine is the best with oil and spicy food
3) Sweetness
Desert with sweet wine
The favorite one is Doluca Safari
Thanks for your attention.

Fermentation Lab Sheets‎ > ‎Wine ( FE 411 )

PURPOSE

To familiarize students with the basic procedures of successful wine making and to measure several parameters that changes during the fermentations.

THEORY

Wine is an alcoholic beverage fermented from fruits, especially from red or white grapes. Wine has a history dating 6000 BC originated Georgia and Iran. Wine is made from varieties of Vitis vinifera. Most known varieties are: Riesling, Chardonnay, Cabernet Sauvignon, Pinot Noir, Gewurztraminer, Sauvignon Blanc and Muscat. A characteristic wine is obtained with each variety.

Saccaharomyces cerevisiae is known as wine yeast. Different strains of yeasts can be used also in wine producing. Yeasts ferment sugar found in the grapes and form alcohol (ethyl alcohol) and CO2 as main compounds. By the way, yeasts produce second metabolites: higher alcohols, esters, organic acids, and carbonyl compounds. These effect wine quality in positive way.

There are many factors particularly ‘terroir’ effecting wine characteristic. Terroir is a concept comprising the varieties of grapes used, elevation and shape of the vineyard, type and chemistry of soil, climate and seasonal conditions and the local yeast cultures. Terroir has also a great effect on fermentation and aging processes.

Generally wine is classified according to place of origin or appellation (Bordeaux, Mosel etc.), vintage or varietal (Chardonnay, Cabernet Suvignon etc.) and vinification methods (sweetness, fortied, color etc.).

A general production of wine:

…..

The Use of Gelatine In Wine Fining

SYNOPSIS

The basic chemistry of protein is developed to enable an understanding of its fining reactions in beverage clarification. Results of various European and South African wine fining experiments are presented. The efficiency of both very high and very low molecular weight gelatins are discussed and it is proposed that protein isoelectric point is a more important attribute in determining fining performance than is the Bloom strength of the gelatine.

Introduction

Beverages like wine, cider and unfermented fruit juices contain insoluble matter which imparts a haze to the beverage which is often not practical to remove by filtration.

The process of haze removal is known as fining. It involves the formation of a floccular precipitate in the beverage which will absorb the natural haze forming constituents while settling. After a settling period, the supernatant can be withdrawn and given a polishing filtration prior to sale.

Wine

WINE MAKING

VITICULTURE:
The study or science of grapes and grape rowing

ENOLOGY: The study or science of wine and winemaking

– Grain  Beer ( 3-12 % alcohol )

– Fruit   Wine ( 11-15 % alcohol, 22% fortified”sherry,port” )

Definition of wine:

Produced by normal alcoholic fermentation of the juice of sound ripe grapes with or without added fortifying grape spirits or alcohol, but without other additions or without the addition or abstraction except as may occur in cellar treatment provided that the product may be ameliorated before during or after fermentation.

Historical background:

  • It is assumed to be consumed before the beginning of recorded history.

  •  Romans advanced the art of wine making.

  • The research of Louis Pasteur revolutionized the wine industry (1840- bacteria is detrimental to wine).

  • Dom Perignon discovered that (1679) when wine is fermented after bottling, the bubbles it creates will remain in the wine so, he is considered as founder of champagne.

Grapes: Vitis vinifera family (European): From Spain to
California 
Vitis lobrusca
family (American): New York, More acid, low sugar, slippy skin) 
Many species, many varieties, differs from year to year and differ due
to; 
Local soil and climate. For harvesting soluble
solids(S.S.) is checked. When
it reaches to highest value (18-21%).
I
t should  be picked immediately 

If the grapes have reached the state of full ripeness and are not harvested immediately, their constituents are concentrated owing to evaporation of water. The grapes become overripe and soft, as a result of which the sugar content increases

  • Further concentration… if the grapes are attacked by the fungus, Botrytis cinerea.

  • Early stage, it causes ‘grey rot,’ …. a deterioration in quality

  • Late stage, … ‘noble rot’ develops, …desirable

  • in special areas, e.g., for the production of Sauterne.( intense and complex flavor)

Ice Wine (Eiswein): 

Clusters frozen on vine after hard freeze, juice pressed from frozen grapes (sugar increased by freeze concentration)

Nature of Microbial Process: 

  • Sugars of grapes ( D-glucose, D-fructose) anaerobic fermentation( yeast)   

                         Alcohol + CO2 + byproducts

  • Yeast: Alcohol tolerance, rate of fermentation, completeness of sugar to ethanol conversion and proportion of desirable by products formation.

  •  Kloeckera apiculata and Candida pulchermia and stellata are naturally exist on the skin of grape and they produce ethanol up to 5 %. After this level Saccharomyces cerevisiae over grown the above microorganisms.

  • Now pure cultures of Saccharomyces cerevisiae var ellipsoideus and var vini are being used. 1% of sugar is used to produce yeast cells, some of the alcohol is evaporated and some alcohol is entrained in CO2 and lost. Normally, ‘spontaneous fermentation’ can scarcely produce more than 17.5% by volume in a wine.

By product:

– Glycerol(2.5-3 %, accumulates during initial stages of fermentation.), One of the most important fermentation by product, which is a major contributory factor in forming the body of the wine.

– acetic acid ( 0.05-0.65 %, produced during early stages of fermentation),

– acetaldehyde ( 0.01-0.04 %, some converted to acetoin and than to 2,3-butanediol ),

– 2.3-butanediol (0.06-0.1 %),

– succinic acid (0.02-0.05 % )

– Higher alcohols (0.01-0.04 %).

– Level of all of these products is strongly influenced by yeast strain and environmental conditions, especially temperature.

Desired properties of a wine yeast;

– should produce alcohol up to 18 %

– should produce 8-12 % alcohol in a reasonable time at low temperatures ( i.e. 4-10 C)

at reasonably high sulfur concentration ( at low rH, redo potential ,it should be able to grow)

– rH = 0 reduction potential of H ion of 1 atm gas hydrogen 

– rH = 42 oxidation potential of oxygen ion of 1 atm oxygen gas

– rH > 25    oxidation

– 15 < rH < 25 medium range

– rH < 15 reduction

– most suitable range for fermentation           is 9 < rH < 15

– 20 < rH < 25 respiration of yeast

–  rH < 9 and rH > 25 inhibits the growth of yeast

– when there is 8-12 % alcohol in the broth, it should re start producing alcohol when extra sugar is added

– should be able to grow on 30 % sugar solution (osmophilic yeast)

– In southern parts of Turkey, yeast should be resistant to alcohol at high temperatures (30-32 C). (when temperature increases, alcohol inhibition increases

Effect of temperature on wine fermentation      

– Alcohol yield, rate of fermentation, concentration and proportions of by products, flavor compound formation  = f ( temperature of fermentation)

– More flavor (aromatic)compound is formed in wine by long, slow, low temperature fermentation than by a rapid, fermentation at temperature close to maximum temperature 

White wines are typically fermented at cooler temperatures than red wines. Cool temperatures (about 15 °C) enhance the production and retention of ‘fruit’ esters synthesized by yeasts, giving the wine a fruity fragrance. This is particularly important for white wines produced from cultivars with little distinctive aroma. Red wines often are fermented at warm
(about 22–25 °C) temperatures to facilitate yeast growth in the presence of grape phenolics, and to promote pigment and flavor extraction from the skins

  • 1 mole glucose, alcohol and CO2     DG= – 56 kcal  ( free energy loss)

  • 2 ATP (14 Kcal) is recovered and remaining is lost as heat. ( 75 % of the energy is lost as heat)

  • Large fermentation tanks cooling is required to keep the temperature constant.

Use of sulfur dioxide;

– Disinfect containers

– Control contamination by m.o.’s. Besides binding to m.o.’s and causing their death (by inhibiting metabolic enzymes containing S-H groups) it also combines readily with carbonyl compounds (i.e. acetaldehyde), unsaturated aliphatic compounds and proteins of the must. Combined form of the sulfur dioxide is much less toxic to m.o.’s and less effective as antioxidant

– protect wine against excessive oxidation during storage and aging (inactivates polyphenoloxidase enzyme so it prevents darkening of wine color

– Small amount of wine potassium bisulfate can be added as SO2 source.

– Large tanks pressurized SO2 is used.

– If acidity of must is high, required amount of SO2 decreases

– Elemental sulfur reduced to hydrogen sulfide and then it reacts with acetaldehyde to form mercaptoethanol which imparts objectionable flavor to wine even at very low levels.( to remove low levels of hydrogen sulfide aerate wine, to remove high levels of hydrogen sulfide treat with SO2 to oxidize hydrogen sulfide to sulfur.)

Yeast nutrition

Yeast needs carbon and energy source, nitrogen, vitamins, minerals. Some times nitrogenous compounds are limited. So addition of ammonium salts (ie (NH4)2HPO4) to sluggish growing yeast can be helpful. Especially it is good to add to inoculums. Wine yeast can ferment hexose sugars but not the pentose sugars

– Self digestion of yeast cells (autolysis, break down of cells) release amino acids and nucleotides so this impart undesirable flavor to wine.

– Autolysis is function of temperature and strain of yeast. Also these released compounds are good food for spoilage bacteria (lactic acid bacteria) therefore sediment yeast should be removed as soon as fermentation is completed.

– But for some cases where high acid wine is desired we may want to have autolysis intentially to support malolactic fermentation

De-acidification of wine

– Organic acids affect the sensory properties of wines, particularly tartness.

– Tartaric and L-malic acids are the major acids in grapes, the former being quantitatively the most important.

– However, grapes grown in cool regions, sometimes contain high levels of L-malic acid, leading to an excessive titratible acidity in the wine produced

Two methods to reduce L-malic acid:

The conversion of malic acid (a dicarboxylic acid) to lactic acid (a mono carboxylic acid) and CO2 during the fermentation is called bacterial malolactic fermentation. Lactobacillus, Pediococcus, Leuconostoc can cause malolactic fermentation. Autolysed yeast will support their growth. The malolactic fermentation most commonly occurs during the middle to late stages of alcoholic fermentation.

– Using certain yeasts (Saccharomyces pombe, malide varans) to convert L-malate to ethanol and CO2 in a mixed fermentation with a strain of wine yeast.

– Some times chemical reduction of acidity using calcium carbonate is also used. This treatment primarily reduces the level of tartaric acid by precipitation as the calcium salt

MAIN
STEPS OF WINE MAKING
 

1) Stemming and crushing: The first operation following the harvesting and transportation of the grapes to the winery is stemming and crushing. ….

– Revolving rollers (Garolla crusher).

– The crushed grapes are then separated from the stems as the grapes pass through a revolving drum perforated with holes which retain stems.

– The resulting crushed grapes ( including seeds and skins)  are then collectively termed as “ grape must” or just “must”

2) Addition of sulfur dioxide:

Added immediately after crushing to inhibit the growth of undesirable yeast and bacteria (50-100 ppm SO2 added). Since 57 % of sulfur is used to produce active SO2 from K2S2O5, conversion should be included in calculations.

3) Addition of sugar : Grapes may not reach their optimum maturity every year. ….. , sugar must be added to the must in order that wine will attain the proper alcohol content.

If grapes contain less than 22 % sugar an appropriate amount of sugar (refined sucrose) is added to bring the must to 22 Brix.

The following formula is used to calculate the amount of sugar to be added to yield a gape must of 22 Brix.

Ws = Wa ( B-A) / (100 –B)   where;

A: Brix of fresh must

B:  Brix of desired must

Wa: weight of the must

Ws: weight of the sugar to be added

Saccharose (sucrose) added to low-sugar musts is likewise fermented  owing to the high content of β-fructofuranosidase (invertase) in yeasts.

4) Color extraction:

– To produce white wine you may use green grape or red grape but be sure that use “cold press” to prevent color extraction from skins.

– To produce red wine you must use red grape and you should apply “hot press” or “fermentation on the skin” processes.

Fermentation on the skin :

Must together with grape skins will be going through alcoholic fermentation and alcohol produced will extract red anthocyanin pigments brings into the solution. The skins tend to float on
the surface of juice and reduce the contact of the skins with fermenting juice.

– The traditional method of securing contact has been to push skins down in to the fermenting liquid.

– In large containers this is very difficult and at present the liquid is pumped from the bottom of the container over the skins.

– When grapes contain mold, a number of polyphenoloxidase enzymes may be present. These cause oxidation of the red anthocyanin pigments to compounds with a brown color.

–  To prevent this there is an increasing practice of heating red grapes to inactivate the enzymes before fermentation. Heating also helps to release the color from the skins

Hot press:

It is often used in making red table wines. The must is heated to 62-63 C, pressed while hot, and then cooled immediately to room temperature. The high temperature of hot pressing extracts the pigments as efficiently as “fermentation on the skin” but some wine makers feel it results in an inferior wine due to undesirable chemical changes and loss of volatiles during the heating process.

Rose’ wine: limited color extraction or mixing red and white wine must

5) Amelioration:

– Adjustment of the must to the right quality before the fermentation.

– In some areas of the world (such as Eastern U S) wine grapes may not always reach maturity before harvest; hence, the grapes may be too acidic. To make quality table wines. (normal acidity ,0.7-0.9 g/100 ml, PH=3.6 )

The most common commercial method to overcome high acidity is amelioration the dilution of the wine by adding water and sugar.

A convenient method of amelioration is to add water in the form 22 brix sugar (sucrose) solution.

Amelioration is not legal in California and in some areas of Europe. (added sugar – water solution can be maximum 35 % of the total)

6) Fermentation: (secondary for red, first for white wine)

– Must is pumped into large fermenting vats (called cooperage). It is a closed vessel where CO2 exit is allowed but not the air in to the vessel.

– It is inoculated with wine yeast and grape sugar is converted to equal parts of alcohol and CO2.

– Complete fermentation, which converts the grape sugar and makes the wine “dry”, takes from a few days to a few weeks.

– Not all the wines are allowed to ferment completely. When some sweetness is desired, the fermentation is stopped while the desired amount of residual grape sugar remains unfermented.

– The temperature must never be allowed to become warmer than 30 C, because higher temperatures cause wine to loose fragrance and tend to stop the fermentation.

– Optimum temperatures for red wine are approximately 15-20 C.

– White wine benefits from a long, cool fermentation which retains the fruity, youthful flavors of the grape.

– So optimum temperature for white wines is 13-18 C.

– During fermentation, SS content of must will decrease first and then stabilizes. (That is the point where all the fermentable sugars are depleted.)

There are three ways of stopping fermentation:

– Racking (siphoning wine without disturbing the yeast which is collected at the bottom) most common one.

After a wine fermented to dryness, it is removed from the lees (dead yeast cells and insoluble material settled to the bottom of the cooperage). By pumping or siphoning the wine to different cooperage. Table wines are racked 2-3 times during production. (Once at the dryness, for tartarate removal and after finning before filtration) For tartarate removal wine is chilled to 0-2 C (4-10 days) to crystallize tartaric acid. And to precipitate it then it is racked to remove tartaric acid crystals.

– Adding alcohol (increasing alcohol concentration over 15 % will prevent yeast growth)

– Pasteurization by heat (not preferred due to excessive flavor loss)

7) Finning and clarification:

– Finning is the clarification of wine by the addition of a substance which reacts the tannins or proteins of the wine or some other added substance to yield a heavy, quick-settling coagulum.

– The finning agent also adsorbs suspended or colloidal material in the wine and, therefore exerts a clarifying action as the precipitate “settles out” of the wine. Agents used; Gelatin -tannin,-casein,-bentonite clay from volcanic ash deposition), -polyclar AT

Pectic enzymes are also used as clarifying agent. Catalyze the chemical breakdown of the pectin’s in wine.

– This pectin’s act as protective colloids holding other constituents in suspension in the wine, giving the wine a cloudy appearance when the enzyme “break down” these pectin’s a clarifying action is achieved.

– In most cases, Pectic enzymes are used while the grapes are “fermented on the skin”, because higher yields during processing can be achieved

– by adding a precisely determined amount of potassium ferrocyanide a series of other metal ions, such as those of copper, zinc, manganese, nickel, and silver, and the extremely toxic metal ions of lead and cadmium, could be precipitated out as
ferrocyanide complexes.

– Whereas centrifugation is only suitable for separating out relatively coarse trub particles, filters can remove even particles down to the molecular range from the wine.

8) Aging

– After filtration, aging generally begins in relatively large upright tanks, which are usually made of stainless steel, redwood or similar neutral materials.

– Another important duty is to keep each cask or barrel filled to the brim. Wine, especially table wine; is perishable and can turn into vinegar when in contact with air. The addition of wine to replace the wine loss by evaporation is called “topping” or “topping up”.

– During aging, wine develops smoothness, mellowness and character.

– The wine clarifies itself, some oxidation occurs as the wine “breathes” through the wood casks and the many complexes natural elements of wine slowly interact, or “marry” for smoothness.

– White seldom require aging more than 6-12 months.

– Red wines mostly aged up to two years.

– As wine mature, many producers complete the aging in smaller containers. Oak is favored by some, but red wood is also much in use. Casks of 1000 gallons, oval-shaped to make the lees deposit in a small space at the bottom, are preferred by many.

– The smaller the container of wood, the greater the ratio of surface through which the wine can “breathe” and take on the flavor characteristics of the container.

9) Blending wines for uniformity:

Many consumers want the same taste, color and fragrance in each bottle under a particular label. However, such uniformity is difficult to guarantee in a product so volatile as wine, because sunshine and moisture vary from year to year and so the grapes from each vineyard vary annually.

There are different times to blend:

a) Blending different grapes while they are being crushed.

b) Young wines are blended soon after fermentation.

c) Many wines of varying ages are blended after they are mature.

10) Bottling wine:

– Bottling occurs when the wine has improved in storage to the level called “ripe for bottling”.

– If wine remains in wooden cooperage too long, it may take on an excessively woody flavor, loose character or especially with white wines, become over-oxidized.

– Wine is only beverage that continues to improve after bottling.

  • Bottle-aging contributes as much improvements in some individual wines as cask aging does before bottling.

  • Closure for wine bottles is corks, screw caps or combinations of both. Metal caps should have inner seals to provide tighter closing and to avoid chemical action of the wine upon the caps.

Seals or capsules are normally wrapped around the necks and mouths of wine bottles to close off leakage, discourage tempering and refilling and to enhance appearance.

Wine quality:

“Why does one bottle of wine cost twice as much as another same sized bottle of the same type of wine?”

– More expensive bottle costs much more to produce, age bottle, ship and sell and that enough consumer exists who appreciate the wine well enough to pay the extra price.

– The grapes used maybe rare, delicate, hard to handle and expensive.

– The wine may have been aged for many years in small casks to develop complexity or there might have been a small quantity of the particular wine and a large enough demand for it to account for its price.

– No other factor of wine quality is so misunderstood as age. Age by itself is an unreliable guide to quality. It should be judged by its other qualities first. If the other qualities please, the age is less important.

– Vintage year (the year grapes grown ) is very important for European wines because quality changes a lot year to year.

– Year, when the grapes fully mature, is important and wines produced in that year is important and expensive.

Classification of wines:

Classification of wines is done with respect to different properties of wines: some of these are as follows,

– Dry wine (no fermentable sugar left in wine)

– Sweet wine (some fermentable sugars exist in wine, either left or added after fermentation)

– Fortified wine (alcohol added)

– Unfortified (all alcohol from fermentation)

– Sparkling wine (fermented in the bottle)

– Still wine (fermentation is completed before bottling)

– Red wine

– White wine

Evaluation of wines

a) Sensory examination: It is an important aspect of cellar operation. At least one person should be responsible in evaluating the data. Wines are judged by the following criteria

– appearance ( clarity, and freedom from sediments )

– odor, aroma, bouquet

– Taste ( sourness, sweetness, bitterness, astringency caused by tannins)

– Flavor ( overall impression)

Sensory evaluation is important for determining when wine is ready for bottling or shipment.

b) Microbiological examination: This includes both microscopic inspection and plating. Its main purpose is to detect excessive numbers of spoilage bacteria and wild yeast.

A sample of wine is plated on the agar plate containing 100 mg/l cycloheximide. It is an antibiotic which inhibits wine yeast but not the wild yeast. So observation of growth on this plate will be indication of wild yeast contamination.

Wine Spoilage

Due to existence of oxygen:

1) Ethanol to acetic acid (by acetic acid bacteria)

It will oxidize the color of wine (white wine amber color, red wine lawny brown color) flavor will also change (ethanol acetaldehyde)

2) Microbial spoilage:  Look at handouts

Carbonic Maceration

– The process of filling a vat with uncrushed grapes, where the grapes at the bottom of the vat are gradually crushed under pressure from the top grapes.

– Juice is released from the bottom grapes and begins to ferment.

– This fermentation releases carbon dioxide, which causes the uncrushed top grapes to ferment within their skins.

– This process is commonly used with young fruity wines with low tannins such as Beaujolais Nouveau. 

SOME IMPORTANT TYPE OF WINES

1) Vermouth:

– Combination of wine, aromatic plants, sugar, sometimes grape must in limited quantities, and alcohol.

– Caramel is the only coloring substance authorized, and is used for red vermouths.

– It contains 15-20 % ethanol. Has two types; Dry (<50 g sugar / l pale) and sweet (150 g sugar / liter dark).

– Most of it produced in Europe (essentially in Italy, France, and Spain)

Only neutral white wines that do not oxidize are employed; they must be low in tannin. The botanicals are usually incorporated into the vermouth in the form of an extract produced by macerating them in aqueous alcohol or a distillate obtained by distilling them in the presence of aqueous alcohol

2) Sherry:

– Most popular appetizer wine (15-20 % alcohol). Fortified with spirit.

– The wines with low total phenol contents suitable to spontaneously develop a wrinkly film of yeast (flor)on the surface of the wine.

– Development of flor depends on the temperature, and wines should be stored between 15 and 20 °C.

– The flor protects the wine from the uptake of oxygen, and prevents oxidative browning, to which the wine is very susceptible.

– The fortification of the wines to 15.5% alcohol (by volume) inhibits film-forming acetic acid bacteria, which would spoil the wine.

– Characteristic nutty (almond) flavor is obtained by aging, 4-8 years, at worm temperatures with Saccharomyces beticus, S. montuliensis and S. rouxii).

Sparkling Wines

  • Sparkling wines are gassy beverages in which the carbon dioxide is found in a state of oversaturation (generally, 4–6 bar at 20 °C).

  • When the wine is poured into a glass, CO2 is rapidly released as a result of the difference in pressure between the hermetically sealed bottle and atmospheric pressure.

  • The endogenous or exogenous origin of the CO2 allows these wines to be classified into two large groups: natural sparkling wines (those produced by the Champenoise, Charmat method (or similar methods), or the ‘pearl’ wines, which have a natural ‘sparkle’) and those carbonated artificially (aerated sparkling wines).

Champagne (sparkling wine):  

Generally pale gold or straw colored.

Classified due to residual sugar content;

Brut nature < 3 g l−1 (only residual sugars),

Extra brut 0–6 g l−1,

Brut < 15 g l−1,

Extra dry 12–20 g l−1,

Dry 17–35 g l−1,

Medium dry 33–50 g l−1, and

Sweet > 50 g l−1

Champagne begins as a white table wine usually several months old, and often made grapes specially grown and selected for it. This wine is blended carefully for fragrance, tartness and consistent quality (At this point it is called cuvee’).

Champagne yeast and sugar are added to cuvee’.
 This induces a second fermentation. At this point the wine is placed in to the bottles which are closed securely to withstand developing pressure caused by fermentation and to capture the CO2 gas produced. It develops more pressure than artificially carbonated soft drinks ever have 100 psia at the end. (Secondary fermentation, 5-6 weeks, 11-12 C, and then one year aging).

– After fermentation, the bottles may be transferred to a different site, for maturation at about 10°C.

– Maturation lasts for 12 months; during this period, the number of viable yeast cells drops rapidly, falling below about 106 cells ml−1 after 80 days.

– Thiamin and diammonium hydrogen phosphate, (NH4)2HPO4, are often added to the cuvée, in concentrations of 0.5 mg l−1 and 100 mg l−1 respectively.

– Thiamin appears to counteract the alcohol-induced inhibition of the uptake of sugar by yeast cells.

– 0.1% SS corresponds to 5 psia. If you want to produce pressure of 100 psia and if the wine contains 2.1 % SS, you should increase it to 4.1 % SS by adding sugar.

– Sparkling wines require such thick heavy bottles , wired-on corks. Workers sometimes wear face masks and gloves.

– Bottles of fermenting champagne are stacked in horizontal tiers or large boxes for few months to several years. During this time secondary fermentation occurs.

– After its completion, the wine ages in the bottles and on the yeast , until  the flavor and bouquet are perfected

Champenoise
,
individual bottle process:  (  Labeled as “fermented in this bottle)

– The bottles are placed upside down on racks. Each day the bottles are lifted slightly, twisted and turned, sediment has moved into the neck of the bottles (riddling process).

– The mouth of the bottles is plunged into a freezing solution of ethylene glycol (45%)  or brine solution, freezing the wine and sediment in the neck.

– When the crown cap is removed, the ice plug with the frozen sediment shoots out of the bottle due to the CO2 pressure. Pressure loss is approximately 1 bar, and wine loss is 10–15 ml (disgorging process).

– To compensate for the wine lost in this disgorging process, clear champagne and the dosage (which consist of a little sweet syrup and aged wine) are added.

– Finally the bottles are corked, the corks wired on and the bottle labeled.

– The champagne undergoes a short final aging before shipment

Transfer System (labeled as fermented in the bottle):

– The wine is left in the bottle with only a crown cap during a minimum of 9 months, sometimes more.

– It is then transferred under pressure with the lees to the Charmat tank.

– From this moment on, the process is exactly like that of the Charmat method.

– It is as laborious as the Champenoise method (from bottle to tank to bottle), and that filtration is carried out on a product that contains a Champenoise bouquet, significantly reducing the sensorial qualities of the sparkling wine.

– The contents of the bottle are disgorged under pressure into a tank.

– The yeast sediment is removed when the champagne is filtered under pressure through a filter into a clean bottle.

– The dosage is added to the tanks or to the bottles before filling.

– A short final aging follows before shipment.

Charmat, Granvas or bulk method;

– Fermentation occur in Charmat tank.

– Base wine and tirage ( nutrient, sugar and yeast) added.

– The ideal temperature for fermentation is 12–13 °C.

–  When the desired CO2 pressure has been reached (approximately 4 bar), the temperature of the Charmat tank is reduced to 8 °C to arrest the fermentation (with 10% of residual sugars).

– The low temperature causes the suspended yeast to sink to the bottom.

– Filtration ( to another tank) by counter-pressure uses a gas (usually carbon dioxide)

Wine Making Presentation

WINE MAKING
Grain Beer ( 3-12 % alcohol )
Fruit Wine ( 11-15 % alcohol, 22% fortified”sherry,port” )
the best examples of “value added” processing…the fermentation of grapes into wine.
On a per capita basis, consumers in Luxembourg, France,and Italy drink the most wine, more than 50 liters per person per year).
This compares to the world per capita average of about 3.5 liters.
Türkiye ….0.26 liters (2005)
France Italy and Spain are biggest producers
Historical background :
It is assumed to be consumed before the beginning of recorded history. The research of Louis Pasteur revolutionized the wine industry ( 1840- bacteria is detrimental to wine). Dom Perignon discovered that ( 1679) when wine is fermented after bottling, the bubbles it creates will remain in the wine so, he is considered as founder of champagne.

Sucrose: less than 1% except for musts from V. Labrusca grapes( which can contain as much as 10% sucrose.)

In general, most grape cultivars contain about 20% sugar (i.e., 10% glucose and 10% fructose),
Juice from mature grapes at 20% sugar is ordinarily about 21°Brix to 24°Brix.
Grapes: Vitis vinifera family ( Europian ): From Spain to California
Vitis lobrusca family ( American) : Newyork More acid, low sugar, slippy skin)
many species, many varieties, differs from year to year and differ due to local soil and climate.

For harvesting soluble solids
(S.S.) is checked.

When it reaches to highest value (18-21%)
it should be picked immediately.
Nature of Microbial Process :
Kloeckera apiculata and Candida pulchermia and stellata are naturally exist on the skin of grape and they produce ethanol up to 5 %. After this level Saccharomyces cerevisiae over grown the above microorganisms.
Now pure cultures of Saccharomyces cerevisiae var ellipsoideus and var vini are being used.
By products :
glycerol (2.5-3 %, accumulates during initial stages of fermentation.), One of the most important fermentation byproduct, which is a major contributory factor in forming the body of the wine.
acetic acid ( 0.05-0.65 %, produced during early stages of fermentation),
acetaldehyde ( 0.01-0.04 %, some converted to acetoin and than to 2,3-butanediol ),
2.3-butanediol ( 0.06-0.1 %),
succinic acid (0.02-0.05 % )
higher alcohols ( 0.01-0.04 %).
Level of all of these products are strongly influenced by yeast strain and environmental conditions, especially temperature.
Desired properties of a wine yeast
should produce alcohol up to 18 %
should produce 8-12 % alcohol in a reasonable time at low temperatures ( ie 4-10 C) at reasonably high sulfur concentration ( at low rH, redox potential ,it should be able to grow)
should be able to grow on 30 % sugar solution ( osmophilic yeast )
Effect of temperature on wine fermentation
Alcohol yield, rate of fermentation, concentration and proportions of by products, flavor compound formation = f ( temperature of fermentation)
More flavor (aromatic)compound is formed in wine by long, slow, low temperature fermentation
White wines are typically fermented at cooler temperatures (about 15 °C) than red wines (about 20 °C) to enhance the production and retention of ‘fruit’ esters synthesized by yeasts, giving the wine a fruity fragrance.
Red wines fermented about 20 °C to facilitate yeast growth in the presence of grape phenolics, and to promote pigment and flavor extraction from the skins.
1 mole glucose alcohol and CO2 DG= – 56 kcal ( free energy loss)
2 ATP ( 14 Kcal ) is recovered and remaining is lost as heat. ( 75 % of the energy is lost as heat)
large fermentation tanks cooling is required to keep the temperature constant.
Use of sulfur dioxide
It is used to -disinfect containers
-control contaminating m.o.’s( kills by inhibiting metabolic enzymes containing S-H groups) also
-combines with carbonyl comp.( ie acetaldehyde ) ,
-unsaturated aliphatic compounds
-proteins of the must. Combined form of the sulfur dioxide is much less toxic to m.o.’s and less effective as antioxidant.
protect wine against excessive oxidation during storage and aging (inactivates polyphenoloxidase enzyme so it prevents darkening of wine color)
small tanks : potassium bisulfite can be added as SO2 source.
large tanks: pressurized SO2 is used.
Yeast nutrition
Yeast needs carbon and energy source, nitrogen, vitamins, minerals.-addition of ammonium salts ( ie (NH4)2HPO4) to sluggish growing yeast.
Wine yeast can ferment hexose sugars but not the pentose sugars.
Self digestion of yeast cells (autolysis, break down of cells): release amino acids and nucleotides, impart undesirable flavor to wine.
Also these released compounds are good food for spoilage ( lactic acid ) bacteria, therefore sediment yeast should be removed as soon as fermentation is completed.
If high acid wine is desired we may want to have autolysis intentionally to support malolactic fermentation
Deacidification of wine
Tartaric and L-malic acids are the major acids in grapes, the former being quantitatively the most important.
However, grapes grown in cool regions, sometimes contain high levels of L-malic acid, leading to an excessive titratible acidity in the wine produced.
two methods to reduce L-malic acid:
The conversion of malic acid ( a dicarboxylic acid ) to lactic acid ( a mono carboxylic acid ) and CO2 during the so called bacterial malolactic fermentation.
Lactobacillus, Pediococcus, Leuconostoc can cause malolactic fermentation. ( during the middle to late stages of alcoholic fermentation)
MAIN STEPS OF WINE MAKING
I-Stemming and crushing:
– crushing :revolving rollers ( garolla crusher).
-separating stems: revolving drum perforated with holes
The resulting crushed grapes ( including seeds and skins) are then collectively termed as “ grape must” or just “must”
II- Addition of sulfur dioxide :
Added immediately after crushing to inhibit the growth of undesirable yeast and bacteria ( 50-100 ppm SO2 added ). (57 % of sulfur is used to produce active SO2 from K2S2O5 )
III- Addition of sugar : if grapes contain less than 22 % sugar an appropriate amount of sugar ( refined sucrose ) is added to bring the must to 22 Brix. to calculate the amount of sugar to be added to yield a gape must of 22 Brix.
Ws = Wa ( B-A) / (100 –B) where;
A : Brix of fresh must
B: Brix of desired must
Wa: weight of the must
Ws: weight of the sugar to be added
IV- Color extraction:
To produce white wine: green grape or red grape with “cold press” to prevent color extraction from skins.
To produce red wine: red grape with “hot press” or “fermentation on the skin” processes.
Pumping over Louis Martini When grapes contain mold( polyphenoloxidase) cause oxidation of the red anthocyanin pigments to compounds with a brown color.
To prevent this heat red grapes to inactivate the enzymes before fermentation .
Heating also helps to release the color from the skins
Hot press :
The must is heated to 62-63 C, pressed while hot, and then cooled immediately to room temperature.
Cause loss of flavor.
Rose’ wine: limited color extraction or mixing red and white wine must
V- Amelioration :add water in the form 22 brix sugar (sucrose ) solution not legal everywhere or limited.
Adjustment of the must to the right quality before the fermentation.(the dilution of the wine by adding water and sugar)
wine grapes may not always reach maturity before harvest: too acidic.
To make quality table wines. ( normal acidity , 0.7-0.9 g/100 ml, PH=3.6 )
VI- Fermentation : ( secondary for red, first for white wine)
Must is pumped into large fermenting vats ( called cooperage ).
CO2 exit is allowed but not the air in to the vessel.
It is inoculated with wine yeast.
Complete fermentation: “dry” wine (takes a few days to a few weeks.)
When some sweetness is desired, the fermentation is stopped while the desired amount of residual grape sugar remains unfermented.
The temperature< 30 C : if not.. loose fragrance and tend to stop the fermentation.
Optimum temperatures for red wine:15-20 C.
White wine: 13-18 C.
During fermentation , SS content of must will decrease first and then stabilizes. ( all the fermentable sugars are depleted.)
Stuck Fermentations ( fermentation fails.)
contain
-significant amount of residual, unfermented sugar
-insufficient ethanol.
The fermentation: slow or complete standstill.
These slow or halted fermentations are referred to as sluggish or stuck fermentations,respectively.
Stuck wine is especially susceptible to spoilage ( due to low ethanol and high sugar) possible causes of a stuck fermentation;
must composition
a) insufficient level of nitrogen or other nutrients
b) too high sugar concentration
c) high ethanol concentration )
d) too high temp(over 30 C due to exothermic ferment)
e) too low temp (less than 10 C)
f) some wild yeast strains (Hansenula, Pichia, and Saccharomyces) secrete proteins called killer toxins ( Mostt common ones K1 and K2)
There are three ways of stopping fermentation:
1-Racking: siphoning wine without disturbing the dead yeast (lees) which is collected at the bottom ) most common one. racked 2-3 times:
– once at the dryness
-tartarate removal (chilled to 0-2 C ( 4-10 days) to crystallize tartaric acid)
– after finning before filtration)
2-adding alcohol ( increasing alcohol concentration over 15 % will prevent yeast growth )
3–pasteurization by heat ( excessive flavor loss)
VII- Finning and clarification :
Finning: clarification of wine by the addition of a substance which reacts with tannins or proteins.the finning agent: adsorb suspended or colloidal material, the precipitate “settles out” of the wine .
– Agents used;
-gelatin-tannin,-casein,-bentonite ( a clay from volcanic ash deposition), -polyclar AT
Pectic enzymes ( chemical breakdown of the pectins): used as clarifying agent.
pectins act as protective colloids holding other constituents in suspension in the wine, giving the wine a cloudy appearance.
In most cases, pectic enzymes are used while the grapes are “fermented on the skin”, because higher yields during processing can be achieved
VII- Aging
aging generally begins in relatively large upright tanks, which are usually made of stainless steel, redwood, oak or similar neutral materials.
– keep each cask or barrel filled to the brim.
– can turn into vinegar when in contact with air.
-The addition of wine to replace the wine loss by evaporation is called “topping” or “topping up”.
During aging , wine develops smoothness, mellowness and character.
some oxidation occurs as the wine “breathes” through the wood casks and the many complex natural elements of wine slowly interact, or “marry” for smoothness.
White seldom require aging more than 6-12 months.
Red wines mostly aged up to two years.
The smaller container: large surface/volume: wine can “breathe” and take on the flavor characteristics of the container.
VIII- Blending ( kupaj )wines for uniformity :
T have the same taste, color and fragrance in each bottle under a particular label( difficult to guarantee: sunshine, moisture vary from year to year. )
times to blend:
a)Blending different grapes while they are being crushed.
b)Young wines are blended soon after fermentation. c)Many wines of varying ages are blended after they are mature.
IX- Bottling wine:
Bottle when “ripe for bottling”.
If wine remains in wooden cooperage too long, it may take on an excessively woody flavor, loose character or especially with white wines, become over-oxidized.
wine is only beverage that continues to improve after bottling.
Closure for wine bottles are either corks, screw caps or combinations of both . Metal caps should have inner seals to provide tighter closing and to avoid chemical action of the wine upon the caps.
Seals or capsules are normally wrapped around the necks and mouths of wine bottles to close off leakage, discourage tempering and refilling and to enhance appearance.
Cork is the bark of the cork oak tree ,Quercus Suber, Western Mediterranean) Final product coated with paraffin and silicone
Wine quality:
“Why does one bottle of wine cost twice as much as another same sized bottle of the same type of wine?”
-the grapes used maybe rare, delicate, hard to handle and expensive.
-aged for many years, -small quantity of the particular wine, -large enough demand
Vintage year ( the year grapes grown ) is very important for Europian wines because quality changes a lot year to year.
Classification of wines :
Dry wine ( no fermentable sugar left in wine)
Sweet wine ( some fermentable sugar exist in wine, either left or added after fermentation)
Fortified wine ( alcohol added )
Unfortified ( all alcohol from fermentation )
Sparkling wine ( fermented in the bottle )
Still wine ( fermentation is completed before bottling)
Red wine
White wine
Evaluation of wines
a) Sensory examination:
-appearance ( clarity, and freedom from sediments )
-odor, aroma, bouquet
-Taste ( sourness, sweetness, bitterness, astringency caused by tannins)
-Flavor ( overall impression)
Sensory evaluation is important for determining when wine is ready for bottling or shipment.
b) Microbiological examination.
– microscopic inspection and plating. Its main purpose is to detect excessive numbers of spoilage bacteria and wild yeast.
A sample of wine is plated on the agar plate containing 100 mg/l cycloheximide. It is an antibiotic which inhibits wine yeast but not the wild yeast. So observation of growth on this plate will be indication of wild yeast contamination.
Wine Spoilage
Due to existence of oxygen:
-ethanol to acetic acid (by acetic acid bacteria )
-it will oxidize the color of wine ( white wine amber color, red wine lawny brown color )
-flavor will also change(ethanol acetaldehyde)
Microbial spoilage : Look at handouts.
Spoilage by fungi rare most fungi are aerobic and sensitive to ethanol. ( important before and after the wine is made. ) contaminated cork closures: cork taints (2,4,6-trichloroanisole (TCA).
the most serious defects in bottled wine. (produce musty- or mushroom-smelling compounds )
Spoilage by yeasts
Kloeckera apiculata: cause a vinegar-like aroma
Brettanomyces/Dekkera: signature chemical for “Brett” spoilage is 4-ethyl phenol.
Spoilage by bacteria: the most common and most disastrous types.
Two distinct groups are of importance: the acetic acid bacteria and the lactic acid bacteria, both of which contain species able to tolerate the low pH, high ethanol conditions found in wine
Ropiness usually occurs only in
sweet wines and is caused by Pediococcus,
Oenococcus, and Leuconostoc spp. the formation of glucose-containing
polysaccharides, such as dextrins and glucans, can give an oily, viscous and objectionable mouth feel.
SOME IMPORTANT TYPE OF WINES
Vermouth : combination of wine, aromatic plants , sugar, sometimes grape must in limited quantities, and alcohol.
Caramel is the only coloring substance 15-20 % ethanol.
Dry ( <50 g sugar / l ,pale ) and sweet ( 150 g sugar / liter dark ).
neutral white wines + botanicals then distillation
Sherry :
Most popular appetizer wine ( 15-20 % alcohol). Fortified with spirit.
Development of flor yeast depends on the temperature, and wines should be stored between 15 and 20 °C The flor protects the wine from the uptake of oxygen, and prevents oxidative browning, to which the wine is very susceptible.
Characteristic nutty ( almond ) flavor is obtained by aging, 4-8 years, at worm temperatures with Saccharomyces beticus, S. montuliensis and S. rouxii ).
Sparkling Wines
gassy beverages: the carbon dioxide is found in a state of oversaturation (generally, 4–6 bar at 20 °C, usually 2-3 times higher than soda pop).
When the wine is poured into a glass, CO2 is rapidly released as a result of the difference in pressure between the hermetically sealed bottle and atmospheric pressure.
two large groups:- natural sparkling wines (those produced by the Champenoise, Charmat method (or similar methods), or the ‘pearl’ wines, which have a natural ‘sparkle’)
-carbonated artificially (aerated sparkling wines).
Champagne ( sparkling wine ) :
Generally pale gold or straw colored. Clasiffied due to residual sugar content.
begins as a white table wine, usually several months old.
This wine is blended for consistent quality ( At this point it is called cuvee’).
Champagne yeast(strains of S. cerevisiae that are selected based on their ability to grow at high ethanol concentrations and low pH and temperature.) and sugar are added to cuvee’.
It develops more pressure than artificially carbonated soft drinks ever have, 100 psia at the end. ( secondary fermentation, 5-6 weeks, 11-12 C, then one year aging ).
After fermentation, the bottles may be transferred to a different site, for maturation at about 10°C.
Maturation lasts for 12 months;
0.1% SS corresponds to 5 psia.
sparkling wines require such thick heavy bottles , wired-on corks. Workers sometimes wear face masks and gloves.
Bottles of fermenting champagne are stacked in horizontal tiers or large boxes for few months to several years. During this time secondary fermentation occurs.
After its completion, the wine ages in the bottles and on the yeast , until the flavor and bouquet are perfected.
Champenoise , individual bottle process: ( Labeled as “fermented in this bottle”)
The bottles are placed upside down on racks. Each day the bottles are lifted slightly, twisted and turned , sediment has moved into the neck of the bottles.( riddling process)
The mouth of the bottles is plunged into a freezing solution of ethylene glycol (45%) or brine solution, freezing the wine and sediment in the neck.
When the crown cap is removed, the ice plug with the frozen sediment shoots out of the bottle due to the CO2 pressure. Pressure loss is approximately 1 bar, and wine loss is 10–15 ml. ( disgorging process).
To compensate for the wine lost in this disgorging process, clear champagne and the dosage ( which consist of a little sweet syrup and aged wine ) are added.
Finally the bottles are corked, the corks wired on and the bottle labeled.
The champagne undergoes a short final aging before shipment.
Charmat , Granvas or bulk method
Fermentation occur in Charmat tank.
Base wine and tirage ( nutrient, sugar and yeast) added.
The ideal temperature for fermentation is 12–13 °C.
When the desired CO2 pressure has been reached (approximately 4 bar), the temperature of the Charmat tank is reduced to 8 °C to arrest the fermentation (with 10% of residual sugars).
The low temperature causes the suspended yeast to sink to the bottom.
Filtration ( to another tank) by counter-pressure uses a gas (usually carbon dioxide)

Wine Production Design

FLOW CHARTS OF WHITE WINE PRODUCTION

DESTEMMING & CRUSHING

(The aim is size reduction ,Capacity;2.875ton/hour)

PRESSING

(To seperate the juice from grape and to remove the skin and seed

Capacity; 2.875ton/hour)

BRIX ADJUSTMENT

(To produce the quality wine, br?x content of grape juice must be 22% and tank capacity is 10 )

FERMENTATION

(For white wine,temperature must be 15C and fermentation time is 10 days and tank capacity is 20 )

CHILLING

(The aim of chilling is to precipitate tartaric acid at 0- 5C in 1-2 days and tank capacity is 20 )

FILTRATION

(The aim of filtering is to remove very fine particules and the size of membrane is 45 micrometer and operation time is 4 hour and mass flow rate is 1.40 kg/sec )

PASTEURIZATION

(Pasteurization is applied at 82C for 15 sec And the operation time is 4h and mass flow rate is 1.40 kg/sec)

AGING

(The taste of wine is improved by using the barrels for aging in 3 months at 17C and 80%relative humidity )

FLOW CHARTS OF RED WINE PRODUCTION

DESTEMMING & CRUSHING

(The aim is size reduction ,Capacity;2.875ton/hour)

BRIX ADJUSTMENT(MACERATION)

(The main purpose is the color extraction from grape skin to juice and for this process 3 days necessary and br?x content of grape juice must be 22%and tank capacity is 10 )

PRESSING

(To seperate the juice from grape and to remove the skin and seed Capacity; 2.875ton/hour)

FERMENTATION

(For red wine,temperature must be 22C and fermentation time is 10 days and tank capacity is 20 )

CHILLING

(The aim of chilling is to precipitate tartaric acid at 0- 5C in 1-2 days and tank capacity is 20 )

FILTRATION

(The aim of filtering is to remove very fine particules and the size of membrane is 45 micrometer and operation time is 4 hour and mass flow rate is 1.40 kg/sec )

PASTEURIZATION

(Pasteurization is applied at 82C for 15 sec And the operation time is 4h and mass flow rate is 1.40 kg/sec)

AGING

(The taste of wine is improved by using the barrels for aging in 3 months at 17C and 80%relative humidity )