Etiket Arşivleri: Atomlar

Atomlar

Atomlar
Eşya malzeme madde element atom Temel parçacıklar (lepton ve kuarklar) Maddelerin atom denen bölünemeyen çok küçük parçacıklardan meydana geldiği fikri ilk kez M.Ö. 5. asırda Demokritos tarafından ortaya atılmıştır. Bu fikir o zamanlar fazla kabul görmemiştir. 19. y.y. başlarında İngiliz bilim adamı John Dalton ilk atom teorisini ortaya atan bilim adamıdır.
Dalton’un atom teorisi
1.Elementler atom denilen çok küçük parçacıklardan meydana gelmiştir. Bir elementin bütün atomları büyüklük, kütle ve kimyasal özellikler bakımından birbirinin aynıdır.
2.Bir elementin atomları, diğer bütün elementlerin atomlarından farklıdır.
3.Bileşikler birden fazla elementin atomlarından meydana gelmiştir. Herhangi bir bileşikte, herhangi iki elementin atomlarının sayılarının birbirlerine oranı basit ve sabit bir orandır.
4.Bir kimyasal reaksiyon sadece atomların birbirlerinden ayrılmalarını, birleşmelerini veya yeniden düzenlenmelerini içerir. Kimyasal reaksiyonlarda atomların oluşmaları veya yok olmaları söz konusu değildir.
Thomson’un atom modeli
Rutherford’un atom modeli
Atomun yapısı
Elektronlar atomun bir parçasıdır. Elektronlar (–) yüklü parçacıklardır, atomlar ise nötrdür. Dolayısıyla atomlarda elektronların yükünü dengeleyecek (+) yüklü parçacıkların olması gerekir.
Çekirdek atomun bir diğer parçası olup elektronlarla eşit oranda fakat ters işaretli (+) yük taşırlar.
Nötron ve protonlar
Rutherford’un atom modeline göre pozitif yüklü atom çekirdeği atomun merkezinde, küçük bir hacim kaplamıştır. Negatif yüklü elektronlar ise atom çekirdeği etrafında belirli yörüngelerde hareket etmektedirler.
Bu modele göre çekirdeği +2 yüklü olan helyumun kütlesi, çekirdeği +1 yüklü olan hidrojenin kütlesinden iki kat fazla olmalıdır. Fakat gerçekte helyumun kütlesi hidrojenin kütlesinin dört katıdır.
Bunun sebebi atom çekirdeğinin hem pozitif yüklü protonlardan hem de elektrik yükü olmayan nötronlardan oluşmasıdır.
Bohr Atom Modeli
Rutherford atom modelinde, elektronların çekirdek çevresinde ne şekilde bulundukları hakkında herhangi bir bilgi bulunmamaktadır.
Bir atomdaki elektronların, tıpkı bir gezegenin güneş etrafındaki yörüngesel hareketi gibi, hareket halinde oldukları düşünüldü.
1913 yılında Hollandalı Fizikçi Niels Bohr klasik fizik ve kuantum kuramının ilginç bir sentezini yaparak hidrojen atomu için yeni bir model ileri sürdü.
Bu modelde yer alan görüşler, şu şekilde özetlenebilir:
1. Elektron, çekirdek etrafında, dairesel yörüngelerde hareket etmektedir.
2. Elektronun hareket edebildiği yörüngelerin belli enerji değerleri vardır. Elektron, bu belli enerjiye sahip yörüngelerde bulunduğu sürece enerji yaymaz.
3. Elektron bir üst enerji düzeyinden (yörüngeden), alt enerji düzeylerine düştüğünde ışıma şeklinde enerji yayar. Yayımlanan ışık fotonunun enerjisi E = hn’dür.
Hidrojen atomundaki enerji düzeyleri’nin (yörüngeler) enerjisi, aşağıda verilen eşitlik ile hesaplanır.
Bohr tarafından önerilen atom modeli, aşağıdaki şekilde şematize edilebilir.
Bohr Atomu
Hidrojen atomunda, yayılan bütün ışınların frekansları aşağıdaki eşitlikten hesaplanabilir.
Dalga-Tanecik İkiliği
1924 yılında Louis de Broglie, hareket eden küçük taneciklerin de dalga özelliği gösterebileceğini ileri sürdü.
De Broglie, elektronun tanecik özelliğinden başka dalga özelliğine de sahip olduğunu düşündü.
De Broglie bu düşüncesini, bir elektron demetini kristal üzerine gönderdiğinde tıpkı X-ışınlarında olduğu gibi kırınıma uğraması ile deneysel olarak kanıtladı.
Elektronların dalga özelliğinin keşfi ile, elektron mikroskobunun yapılabilirliği gerçekleşti.
Elektron mikroskobu bilimde devrim yaptı.
Günümüzde, modern elektron mikroskopları sayesinde biyolojik dev moleküller gerektiği gibi incelenebilmektedir.
De Broglie’ye göre bir elektronun dalga boyu aşağıdaki eşitlikle ifade edilir.
Heisenberg’in Belirsizlik İlkesi
Heisenberg’e göre, elektron gibi çok küçük taneciklerin yeri ve momentumu (hızı) aynı anda hassas bir şekilde belirlenemez.
Yeri hassas olarak belirlenmeye çalışıldığında, momentumunda belirsizlik artar.
Momentumu hassas olarak belirlenmeye çalışıldığında ise yerindeki belirsizlik artar.
Bu durum, matematiksel olarak şöyle ifade edilir.
Bohr Atom Modelindeki Yanlışlıklar
De Brogli’ye göre, elektron dalga özelliğine de sahiptir.
Heisenberg ise elektronun yerinin hassas bir şekilde belirlenemeyeceğini ileri sürmektedir.
Bu görüşlerin ışığında, Bohr atom modeline yeniden bakıldığında, bu modelin kısmen yanlış olduğu görülmektedir.
De Broglie ve Heisenberg’in görüşleri doğru ise (doğruluğu kabul edilmektedir) atomda elektronların kesin yörüngeler üzerinde hareket ettiğini söylemek yanlıştır.
Yani, elektronun çekirdek etrafında dairesel yörüngelerde hareket ettiği görüşü günümüzde geçerli değildir (Bohr atom modelindeki 1. madde).
Dalga Mekaniği Atom Modeli (Modern Atom Kuramı)
1927 yılında Erwin Schrödinger, elektronların dalga özelliğine sahip olduğu gerçeğinden hareket ederek, elektron gibi çok küçük taneciklerin üç boyutlu uzaydaki hareketini tanımlayan bir denklem ileri sürdü.
Modern Atom Kuramı
Schrödinger denkleminin çözümünden, n, l, ml şeklinde üç kuantum sayısı bulunur.
Bu kuantum sayılarının üçünün belli değerleri, elektronların bulunma ihtimalinin yüksek olduğu yerlere karşılık gelir.
Elektronun bulunma ihtimalinin yüksek olduğu yerlere “orbital” denir.
Orbitallerin kesin sınırları olmamakla beraber, elektronun zamanının %90-95’ini geçirdiği bölgeye orbital denmektedir.
Schrödinger denkleminin çözümüyle elde edilen hidrojen atomuna ait bilgilerde artık yörünge kavramı tamamen çürütülmüştür.
Yeni atom modelinde, elektron, kesin yörüngeler üzerinde değil, orbital adı verilen uzay parçalarında hareket etmektedir.
Kuantum teorisine göre atom
Atomun kuantum modelini Bohr, De Broglie, Heisenberg ve Schrödinger gibi bilim adamları atomun bugün kabul edilen modelinin gelişmesinde rol oynadılar.
Bu teoriye göre proton ve nötronlardan oluşan atom çekirdeği atomun merkezinde bulunur. Elektronlar ise varlıkları ve şekilleri matematiksel olarak hesaplanan orbitallerde atom çekirdeğinin etrafında dalga karakterinde bir hareketle dolaşırlar.
Orbital
s orbitalleri
p orbitalleri
Atom numarası, kütle numarası, izotoplar
Atom numarası herhangi bir elementin atom çekirdeğindeki proton sayısıdır, Z ile gösterilir.
Kütle numarası herhangi bir elementin atom çekirdeğindeki proton sayıları ile nötron sayılarının toplamıdır, A ile gösterilir.
Nötron sayısı = A – Z
Atom numaraları (proton sayıları) aynı olan, kütle numaraları farklı olan atomlara izotop denir. Bir elementin farklı izotopları olabilir. Yani izotoplar aynı elementleri ifade ederler, fakat nötron sayılarının farklılığından dolayı izotop olan atomların kütleleri farklıdır.
Atom numarası, kütle numarası, izotoplar
Kuantum Sayıları
Baş kuantum sayısı (n): Enerji düzeylerini ve elektronun çekirdeğe olan ortalama uzaklığını gösterir.
n = 1, 2, 3, 4, ……∞ kadar pozitif tamsayılı değerler alır.
Açısal kuantum sayısı (l): Bu sayı, orbital türünü belirler.
Alabildiği değerler; l = 0, 1, 2, 3, ….(n-1).
n = 1 l = 0 haline karşılık gelen orbital s
n = 2 l = 1 haline karşılık gelen orbital p
n = 3 l = 2 haline karşılık gelen orbital d
n = 4 l = 3 haline karşılık gelen orbital f
Magnetik kuantum sayısı (ml): Magnetik kuantum sayısı, orbitallerin sayısı ve uzaydaki yönelişlerini belirler.
ml = -l, …., 0, …., +l kadar değer alır.
Örneğin:
l = 1 ise ml = -1, 0, +1
Kuantum sayılarının takımı, orbitalleri nasıl etkiler?
Her 3 kuantum sayısının bir setine, 1 orbital karşılık gelmektedir.
Örneğin:
n = 1 ise l = 0 ve ml = 0 1s orbitali
Soru: n = 2 ve n = 3 enerji düzeylerini, kuantum sayıları ve orbitaller açısından tanımlayınız.
Soru: n = 4, l = 2 ve ml = 0 kuantum sayılarına karşılık gelen orbital hangisidir?
Baş kuantum sayısı n’ye kabuk, açısal kuantum sayısı l’ye ise alt kabuk da denir.
Her bir kabukta (yani enerji düzeyinde) n2 tane orbital vardır.
Her bir alt kabuk (2l + 1) tane orbital içerir.
Atomik Orbitaller
Atomik orbitaller; s, p, d ve f notasyonları kullanılarak gösterilir.
Bütün s-orbitalleri küresel yapılıdır.
p-Orbitalleri üç tane olup eş enerjilidir. Bu orbitaller; x, y ve z eksenleri üzerinde yer alıp, ikişer lob’a sahiptir.
x-Ekseni üzerinde yer alan orbitale px, y-ekseni üzerinde bulunan orbitale py ve z-ekseni üzerinde bulunan orbitale ise pz orbitali denir.
p-Atomik Orbitalleri
d-Atomik Orbitalleri
d-Orbitalleri dörder lob’lu olup, eksenler üzerinde ve eksenler arası bölgelerde bulunurlar.
dx2-y2 ve dz2 exenler boyunca; dxy, dyz ve dzx orbitalleri ise eksenler arası bölgelerde yönlenirler.
d-Atomik Orbitalleri
d-Orbitalleri
f-Atomik Orbitalleri
7 tane f-orbitali olup, bunlar altışar lob’lu dur.
Dışardan herhangi bir magnetik etki olmadıkça, bütün f-orbitalleri eş enerjilidir.
Spin Kuantum Sayısı (ms)
Elektronun çekirdek çevresinde yaptığı hareketten başka, bir de kendi ekseni etrafında yaptığı dönme hareketi vardır.
Kendi ekseni etrafındaki bu dönme hareketine, spin hareketi denir.
Bu spin hareketi de kuantlaşmış olup, spin kuantum sayısı (ms) ile tanımlanmaktadır.
Spin hareketi, saatin dönme yönünde ve tersi yönünde olmak üzere iki türlüdür.
Bu nedenle, spin kuantum sayısı ms = ± ½ şeklinde iki değer almaktadır.
Orbitallerin enerji Sırası
Çok elektronlu atomlarda orbitallerin enerjisi, baş kuantum sayısı (n) ve açısal kuantum sayısı (l)’ye göre tespit edilir.
Orbitallerin enerjisi (n + l) toplamına göre düzenlenir.
(n + l) toplamı büyük olan orbitalin enerjisi büyük, küçük olanının enerjisi küçüktür.
(n + l) toplamı eşit olan atomik orbitallerin enerjisi, baş kuantum sayısı n’ye göre belirlenir.
n’si küçük olan atomik orbitalin enerjisi küçük, n’si büyük olan orbitalin enerjisi büyüktür.
Orbital n l n + l
1s 1 0 1
2s 2 0 2
2p 2 1 3
3s 3 0 3
3p 3 1 4
3d 3 2 5
4s 4 0 4
4p 4 1 5
4d 4 2 6
4f 4 3 7
Orbitallerin enerji sırasını bulmada kullanılan pratik bir yol çapraz tarama olarak bilinen yoldur.
Bu yöntemde, sol üst orbitalden başlayıp hiçbir orbital atlamadan çapraz olarak tüm orbitaller taranır.
Elementlerin Elektronik Yapıları
Bir atomda elektronların düzenlenme şekline atomun elektronik yapısı denir.
Elektronlar, orbitalleri üç kurala uyarak doldururlar. Bunlar:
Elektronlar, orbitalleri en az enerjili orbitalden başlayarak doldururlar. Düşük enerji seviyeli bir orbital tamamen dolmadan, bir üst seviyedeki orbitale elektron giremez (Aufbau İlkesi).
Bir orbitale en fazla ters spinli iki elektron girebilir (Pauli İlkesi).
Atom içerisinde elektronların girebileceği aynı (eş) enerjili birden fazla boş orbital varsa, elektronlar bu orbitallere önce paralel spinlerle tek tek girerler.
Böylece, eş enerjili orbitallerin tamamı yarı dolmuş (yani tek elektronlu) duruma geldikten sonra, gelen elektronlar, zıt spinlerle bu yarı dolmuş orbitalleri doldururlar (Hund Kuralı)
Elementlerin Elektron Konfigurasyonları (Dağılımları)
Atomik orbitaller, çoğu zaman bir kare, daire yada yatay bir çizgi ile gösterilirler.
Elektronlar ise çift çengelli oklar ile temsil edilirler.
Aufbau İlkesinden Sapmalar
Çoğu element için Aufbau Yöntemine göre öngörülen elektron dağılımları deneysel olarak da doğrulanmıştır.
Birkaç elementin elektron dağılımı, bazı ufak sapmalar gösterir.
Bu değişiklikler, dolu ve yarı dolu orbitallerin kararlılığı ile açıklanır (küresel simetri).
Magnetik Özellikler
Atomlar, iyonlar ve moleküller; magnetik alanda farklı davranış gösterirler.
Eşleşmemiş elektronlar içeren maddeler, paramağnetik özellik gösterirler.
Paramağnetik maddeler, mağnetik alan tarafından kuvvetle çekilirler.
Na atomu, hidrojen atomu veya oksijen molekülü (O2) paramanyetik özellik gösterir.
Bir maddenin bütün elektronları eşleşmişse, o madde diamagnetik özellik gösterir.
Diamagnetik maddeler, magnetik alan tarafından zayıf bir kuvvetle itilirler.
Mg ve Ca atomları, diamagnetik özellik gösterip, magnetik alan tarafından zayıf bir kuvvetle itilirler.
Bazı maddeler de magnetik alan tarafından kuvvetle itilirler.
Bu tür maddelere, ferromagnetik maddeler denir.
Fe, Co ve Ni, bu özelliğe sahip maddelere örnek teşkil eder.
Grup ve Peryot Bulunması
Atom numarası verilen elementin elektron dağılımı yapılır.
Orbital katsayısı en yüksek olan sayı, elementin periyot numarasını verir.
Son elektron s veya p orbitalinde bitmişse, element A grubundadır.
s-Orbitali üzerindeki sayı doğrudan A grubunun numarasını verir.
Elementin elektron dağılımı p orbiatli ile bitmişse, p’nin üzerindeki sayıya 2 ilave edilerek grup numarası bulunur.
Örnekler:
11Na: 1s2 2s2 2p6 3s1 3. Peryot, 1A Grubu
17Cl: 1s2 2s2 2p6 3s2 3p5 3. Peryot, 7A Grubu
En son elektron d orbitalinde bitmişse, element B grubundadır.
Örnek:
25Mn: 1s2 2s2 2p6 3s2 3p6 4s2 3d5
4. Periyot, 7B Grubu
Elektron dağılımı yapılan elementin en son elektronu 4f orbitalinde bitmişse Lantanitler, 5f de bitmişse Aktinitler serisinin bir üyesidir.
Periyodik Tablo (Çizelge)
Periyodik tablonun temel özelliği, elementleri artan atom numaralarına göre yan yana ve benzer özelliklerine göre de alt alta toplamasıdır.
Periyodik tabloda yatay sütunlara peryot, dikey sütunlara da grup denir.
Perydik tablo, 8 tane A ve 8 tane de B grubundan oluşmaktadır.
Periyodik tabloda grup sayısı artmaz ama sonsuz sayıda peryot olabilir.
Her peryot s ile başlar, p ile biter.
Birinci peryot 2 (H ve He), ikinci ve üçüncü peryotlar 8, dördüncü ve beşinci peryotlar 18 element bulundururlar.
Periyodik tabloda, bazı elementlerin özel adları vardır.
1A grubu elementlerine alkali metaller, 2A grubu elementlerine toprak alkali metaller, 7A grubu elementlerine halojenler ve 8A grubu elementlerine de soygazlar denir.
Alkali Metaller
Lityum Li
Sodyum Na
Potasyum K
Rubityum Rb
Sezyum Cs
Fransiyum Fr
Toprak Alkali Metaller
Berilyum Be
Magnezyum Mg
Kalsiyum Ca
Stronsiyum Sr
Baryum Ba
Radyum Ra
Periyodik Tablo
Halojenler
Flor F
Klor Cl
Brom Br
İyot I
Astatin At
Soygazlar
Helyum He
Neon Ne
Argon Ar
Kripton Kr
Ksenon Xe
Radon Rn
Elementler, fiziksel özelliklerine göre metaller ve ametaller olmak üzere iki şekilde sınıflandırılır.
Elementlerin çoğu metaldir ve metaller;
Elektrik ve ısıyı iyi iletirler,
Cıva hariç oda sıcaklığında katıdırlar ve taze kesilmiş yüzeyleri parlaktır,
Dövülerek levha haline gelebilirler,
Çekilerek tel haline gelebilirler,
Yüksek erime ve kaynama noktalarına sahiptirler,
Bileşiklerinde daima pozitif (+) yükseltgenme basamaklarına sahiptirler,
gibi özellikleri vardır.
Periyodik tablonun sağ üst tarafında bulunan çok az element, metallerden farklı özelliklere sahiptir ve bunlara ametaller denir.
Azot, oksijen, klor ve neon gibi bazı ametaller oda sıcaklığında gazdır.
Brom sıvıdır.
Karbon, fosfor ve kükürt gibi bazı ametaller katı olup kırılgandırlar.
Metallerle ametaller arasında bulunan bazı elementler, hem metalik hem de ametalik özellikler gösterir ve bunlara yarımetaller veya metaloidler denir.
Yarımetaller (Metaloidler)
Bor B
Silisyum Si
Germanyum Ge
Arsenik As
Antimon Sb
Tellur Te
Astatin At
Atomlar ve İyonların Büyüklüğü
Atom yarıçapları
Atomlar, küresel yapılı tanecikler olarak kabul edilir.
Atom yarıçapı, çekirdeğin merkezi ile en dış kabukta bulunan elektronlar arasındaki uzaklık olarak tanımlanır.
Atomlar tek tek izole edilemediğinden, yarıçaplarının doğrudan ölçülmesi zordur.
Atomlar ve İyonların Büyüklüğü
Atom yarıçapları, daha çok dolaylı yollardan bulunur.
Örneğin, birbirine kovalent bağla bağlı iki atomun çekirdekleri arasındaki uzaklık (bağ uzunluğu) deneysel olarak ölçülebilir. Bu değerin uygun şekilde ikiye bölünmesi ile, atom yarıçapı bulunur.
Bu şekilde bulunan yarıçapa “Kovalent yarıçap” denir.
Metaller için “Metalik yarıçap”, kristal hallerdeki katı metalde yan yana bulunan iki atomun çekirdekleri arasındaki uzaklığın yarısı olarak belirlenir.
Atom yarıçapları, daha çok pikometre (pm) cinsinden verilir.
1 pm = 10-12 m
Periyodik çizelgede bir periyot boyunca soldan sağa doğru gidildiğinde, genel olarak atom yarıçapları küçülür.
Bir grup boyunca yukardan aşağıya doğru inildiğinde ise, genel olarak atom yarıçaplarında artış olur.
İyon yarıçapları, iyonik bağla bağlanmış iyonların çekirdekleri arasındaki uzaklık deneysel olarak ölçülüp, katyon ve anyon arasında uygun bir şekilde bölüştürülmesi ile bulunur.
Her hangi bir atomdan türetilen pozitif iyon, daima o atomdan daha küçüktür.
Atomlar ve İyonların Büyüklüğü
Bir atomun +2 yüklü iyonu +3 yüklü iyonundan daha büyüktür.
Örneğin;
Fe 117 pm
Fe+2 75 pm
Fe+3 60 pm
Buna karşılık, negatif bir iyonun yarıçapı daima türediği atomunkinden daha büyüktür.
Örneğin;
Cl 99 pm
Cl- 181 pm
Soru: Periyodik çizelgeden yararlanarak, parantez içerisinde verilen atom ve iyonları büyüklüklerine göre sıralayınız (Ar, K+, Cl-, S2-, Ca2+)
İyonlaşma Enerjisi
Gaz halindeki izole bir atomdan, bir elektron uzaklaştırarak yine gaz halinde izole bir iyon oluşturmak için gerekli olan minimum enerjiye “iyonlaşma enerjisi” denir.
İyonlaşma enerjisi, tanımından da anlaşılacağı gibi, bir atomdaki elektronların çekirdek tarafından ne kadar bir kuvvetle çekildiğinin bir ölçüsüdür.
Aynı zamanda iyonlaşma enerjisi, elektronları çekirdeğe bağlayan kuvveti yenmek için gerekli olup, bir atomun elektronik yapısının ne kadar kararlı olduğunun da bir ölçüsüdür.
Bir elektronu uzaklaştırılmış bir iyondan, ikinci bir elektronu uzaklaştırmak için gerekli olan enerjiye de “ikinci iyonlaşma enerjisi” denir.
Aynı şekilde, üçüncü, dördüncü ve daha büyük iyonlaşma enerjileri de tanımlanır.
Bir sonraki iyonlaşma enerjisi, daima bir önceki iyonlaşma enerjisinden daha büyüktür.
Periyodik çizelgede bir grup boyunca, yukardan aşağıya inildikçe elementlerin birinci iyonlaşma enerjileri genel olarak azalır.
Element Atom yarıçapı(pm) IE1(kj/mol)
Li 152 520,2
Na 186 495,8
K 227 418,8
Rb 248 403,0
Cs 265 375,7
Periyodik çizelgede bir periyot boyunca, soldan sağa doğru gidildiğinde elementlerin birinci iyonlaşma enerjileri genel olarak artar.
Metal atomları, ametal atomlarına kıyasla, daha düşük iyonlaşma enerjisine sahiptirler.
Elektron İlgisi
İyonlaşma enerjisi elektron kaybı ile ilgilidir.
Elektron ilgisi (EI) iyonlaşma enerjisinin tersi olup, gaz halindeki nötr bir atoma elektron katılarak yine gaz halindeki negatif bir iyon oluşturma işlemidir.
Bu tür işlemlerde her zaman olmamakla beraber, enerji açığa çıkar.
Bu nedenle, birinci elektron ilgilerinin (EI1) büyük bir çoğunluğu, negatif işaretlidir.
Kararlı elektronik yapıya sahip olan elementlerin, bir elektron kazanması enerji gerektirir.
Yani olay endotermiktir ve elektron ilgisi pozitif işaretlidir.
Elektron İlgisi
Genel olarak, Periyodik çizelgede bir periyot boyunca soldan sağa gidildiğinde elektron ilgisi artar.
Bir grupta yukarıdan aşağıya doğru inildiğinde ise elektron ilgisi azalır.
Ametaller, metallere kıyasla daha yüksek elektron ilgisine sahiptirler.
Bazı elementler için ikinci elektron ilgisi (EI2) değerleri de tayin edilmiştir.
Negatif bir iyon ile bir elektron birbirlerini iteceklerinden, negatif bir iyona bir elektron katılması enerji gerektirir.
Bu nedenle, bütün ikinci elektron ilgisi (EI2) değerleri, pozitif işaretlidir.
Elektron İlgisi
Kimyasal Bağlar
Atomları bir arada tutan kuvvete, kimya dilinde kimyasal bağ denir.
Kimyasal bağlar, aile içindeki yada akrabalar arasındaki bağlara benzetilebilir.
1916-1919 yılları arasında Amerikalı Kimyacı Gilbert Newton Lewis ve arkadaşları tarafından Kimyasal bağlarla ilgili önemli bir kuram geliştirilmiştir.
“Lewis Bağ Kuramı” olarak da bilinen bu kuram, şu temel esasa dayanır.
Soy gazların asallıkları (reaksiyon verme eğilimlerinin olmayışı) elektron dağılımlarından dolayıdır ve diğer elementlerin atomları, soy gaz atomlarının elektron dağılımlarına benzemek amacıyla bir araya gelmektedir.
Lewis Simgeleri ve Lewis Yapıları
Lewis, kendi kuramı için özel bir gösterim geliştirmiştir.
Lewis simgesi, iç kabuk elektronları ve çekirdeği gösteren bir simge ile dış kabuk (değerlik) elektronlarını gösteren noktalardan oluşur.
Kimyasal Bağlar
Soru: Parantez içerisinde verilen elementlerin Lewis simgelerini yazınız (15P, 16S, 53I, 18Ar, 12Mg, 3Li).
Kimyasal Bağlar
Kimyasal Bağ Çeşitleri
İyonik bağ
Kovalent bağ
Metalik bağ
İyonik Bağ
Bir atomdan diğerine elektron aktarılması ile oluşan bağlara iyonik bağ denir.
İyonik bağ, daha çok metalik özellik gösteren elementlerle ametaller arasında meydana gelir.
Metaller, iyonlaşma enerjileri düşük olup elektron vermeye ve pozitif iyonlar oluşturmaya eğilimlidirler.
Ametallerin ise elektron ilgileri yüksek olup, negatif iyonlar oluşturmaya meyillidirler.
Böylece elektron alışverişi sonucu oluşan bu küresel yapılı pozitif ve negatif iyonlar, birbirlerini elektrostatik çekim kuvvetleri ile çekerek iyonik bağı oluştururlar.
İyonik Bağa ve İyonik Bileşiklerin Lewis Yapılarına Örnekler:
Sodyum klorürün (NaCl) Lewis yapısı
Bu tepkimede yer alan atom ve iyonların tam elektronik yapıları
Örnek: Magnezyum klorür’ün (MgCl2) Lewis Yapısı
Örnek: Aluminyum oksit’in (Al2O3) Lewis Yapısı
Soru: Aşağıda adları verilen bileşiklerin, Lewis yapılarını yazınız.
a) kalsiyum klorür b) lityum oksit
c) baryum sülfür
İyonik Bileşiklerin Özellikleri
İyonik bileşiklerin moleküler (kovalent) bileşiklerden farklı birçok özellikleri olup, bu özellikler şu şekilde sıralanabilir:
İyonik bileşikler katı halde iken son derece düşük elektriksel iletkenlik gösterirler. Oysa bu bileşikler eritildiklerinde yada suda çözüldüklerinde, oldukça iyi elektriksel iletkenlik gösterirler.
İyonik Bağ
İyonik bileşikler, yüksek erime ve kaynama noktalarına sahiptirler.
İyonik bileşikler çok sert fakat kırılgandırlar.
İyonik bileşikler, genellikle su gibi polar çözücüler içerisinde çözünürler.
Kovalent Bağ
Kovalent bağ, ametal atomları arasında meydana gelir.
Ametal atomları, elektron ilgileri bakımından birbirlerine benzediklerinden kovalent bağların oluşumu esnasında elektron aktarımı olmaz.
Bunun yerine, elektronlar ortaklaşa kullanılır.
Bu şekilde, elektronların ortaklaşa kulanımına dayalı bağ türüne “kovalent bağ” denir.
Kovalent bağa ve kovalent moleküllerin Lewis yapılarına örnekler:
Örnek: H2
Kovalent Bağ
Örnek: Cl2
Kovalent Bağ
Örnek: HCl
Kovalent Bağ
Örnek: H2O
Katlı Kovalent Bağlar
Örnek: O2
Katlı Kovalent Bağlar
Örnek: N2
Bağ Derecesi ve Bağ Uzunluğu
Bağ derecesi; bir bağın tekli, ikili yada üçlü olduğunu gösterir.
Bağ Türü Bağ Derecesi
Tekli 1
İkili 2
Üçlü 3
Bağ Derecesi ve Bağ Uzunluğu
Bağ Uzunluğu, birbirlerine kovalent bağla bağlı iki atomun merkezleri arasındaki uzaklık olarak tanımlanır.

Atomlar, Moleküller ve İyonlar ( Yrd.Doç.Dr. İbrahim İsmet ÖZTÜRK )

ATOMLAR, MOLEKÜLLER VE İYONLAR

Yrd.Doç.Dr. İbrahim İsmet ÖZTÜRK

2. Atomlar, Moleküller ve İyonlar 2.1. Atom Kuramı 2.2. Atomun Yapısı 2.2.1. Elektron 2.2.2. Radyoaktiflik 2.2.3. Proton ve Çekirdek 2.2.4. Nötron 2.3. Atom Numarası, Kütle Numarası ve İzotoplar 2.4. Periyodik Çizelge 2.5. Moleküller ve İyonlar

2.6. Kimyasal Formüller 2.6.1. Molekül Formülü 2.6.2. Kaba Formül 2.6.3. İyonik Bileşiklerin Formülü 2.7. Bileşiklerin Adlandırılması 2.7.1. İyonik Bileşikler 2.7.2. Moleküler Bileşikler 2.7.3. Asitler ve Bazlar

2.1. Atom Kuramı Milattan önce beşinci yüzyılda, yunan filozofu Democritus, bütün maddeleri, bölünemez veya kesilemez anlamında atomos olarak adlandırılan, çok küçük, bölünmez taneciklerden oluştuğunu öne sürmüştür. ĐĐlklk bilimsel araştırmalardan elde edilen deneysel kanıtlar atom kavramına destek sağlamış ve zamanla element ve bileşiklerin modern tanımlarının yapılmasına yol açmıştır. Bugün atom adını verdiğimiz, maddenin bölünmez yapı taşlarının tanımı, 1808 yılında, bir İngiliz bilim adamı ve öğretmen olan John Dalton tarafından tam olarak yapılmıştır.

Dalton Atom Kuramı aşağıdaki gibi özetlenebilir: 1-Elementler atom adı verilen son derece küçük taneciklerden oluşurlar. 2-Belli bir elementin bütün atomları birbirinin aynıdır, ancak bir elementin atomları diğer bütün elementin atomlarından farklıdır. 3-Bileşikler birden çok elementin atomlarından oluşmuştur. Herhangi bir bileşikteki iki elementin atom sayılarının oranı bir tam sayı yada basit tam sayılı bir kesirdir. 4-Kimyasal tepkimeler, yalnızca atomların birbirlerinden ayrılması, birbirleri ile birleşmesi yada yeniden düzenlenmesinden ibarettir.

Dalton atom kuramına göre, bir elementin atomları birbirinin aynıdır, fakat diğer elementlerin atomlarından farklıdır. 3. varsayımda, bir bileşik oluşturabilmek için belli elementlerin belirli sayıda atomlarına gereksinim olacağına işaret edilmektedir. Sabit oranlar yasası bir bileşiğin farklı örneklerinde, bileşiği oluşturan elementlerin kütlece daima aynı oranda bulunduklarını belirtir.

Dalton’un 3. Varsayımı diğer bir önemli yasa olan katlı oranlar yasasınıda destekler niteliktedir. Bu yasaya göre; iki element birden fazla bileşik oluşturmak üzere birleşebilirse, bir elementin belli bir kütlesi ile birleşen diğer elementin farklı kütleleri arasında küçük tam sayılı bir oran vardır. Dalton’un dördüncü varsayımı, madde yoktan var edilemez ve varken yok edilemez diye bilinen kütlenin korunumu yasasının başka bir ifadesidir.

2.2. Atomun Yapısı Dalton atom kuramına göre, atom bir elementin kimyasal olarak birleşebilen temel birimi olarak tanımlanabilir. Dalton, atomu hem çok küçük hemde bölünemez olarak düşünmüştür. Oysa 1850’li yıllarda başlayıp 20.yy a kadar uzanan araştırmalar, atomların atom altı tanecikler adı verilen daha da küçük taneciklerden oluştuğunu göstermiştir. Bu araştırmalar elektron, proton ve nötronların keşfine yol açmıştır.

2.2.1.Elektron

2.2.2. Radyoaktiflik 1895’te Alman fizikçi, Wilhelm Röntgen katot ışınlarının, cam ve metallerin olağan dışı ışın yaymasına neden olduğunu gördü. Yayımlanan bu yüksek enerjili radyasyon, maddenin içinden geçebiliyor, fotoğraf filmi levhalarını karartıyor ve çeşitli maddelerin fluoresan ışık yayımlamasına sebep oluyordu. Bu ışınlar bir mıknatıs etkisi ile saptırılamadığından, katot ışınları gibi yüklü tanecikler değildi. Röntgen bu ışınlara X-ışınları adını verdi. Wilhelm Röntgen tarafından oluşturulan, eşi Anna Bertha’nın elinin X-ışını görüntüsü.

X-ışınlarının bulunuşundan hemen sonra Antoine Becquerel, maddelerin fluoresan özelliklerini incelemeye başladı. Tesadüf sonucu, kalın kâğıtla sarılmış fotoğraf filmi levhalarının bir uranyum bileşiğinin etkisinde katot ışınları olmadan da karardığını fark etti. Uranyum bileşiğinden kaynaklanan bu ışınlar aynı X-ışınları gibi yüksekyüksek enerjilienerjili idiidi veve birbir mıknatısmıknatıs ileile saptırılamıyorlardısaptırılamıyorlardı;; ancak X-ışınlarından farklı olarak bu ışınlar kendiliğinden oluşuyordu. Marie Curie, kendiliğinden tanecik ve/veya ışın yayımlanması olgusunu betimlemek üzere radyoaktiflik terimini önerdi. Bu nedenle, kendiliğinden radyasyon yayımlayan herhangi bir elemente radyoaktif element denir.

Daha sonraki araştırmalar radyoaktif maddelerin bozunması ya da parçalanması ile üç tür ışın oluştuğunu ortaya koydu. Bu ışınlardan ikisi artıartı veve eksieksi yüklüyüklü metalmetal levhalar tarafından saptırılır . Alfa (α) ı şınları, α tanecikleri adı verilen artı yüklü taneciklerden oluşur ve bu nedenle de artı yüklü levha tarafından saptırılır. Beta (β) ı şınları ya da β tanecikleri, elektronlar olup eksi yüklü levha tarafından saptırılırlar. Üçüncü çeşit radyoaktif ışıma, gama ( γ) ı şınları adı verilen yüksek enerjili ışınlardan oluşur ve gama ışınları yüksüz olup dışsal bir elektrik veya manyetik alan tarafından etkilenmezler.

2.2.3. Proton ve Çekirdek 1900’lü yılların başında atomların iki özelliği belli olmuştur, atomlar elektronları içeriyordu ve elektriksel olarak nötürdü. Elektriksel açıdan yüksüz olabilmesi için bir atomda eşit sayıda artı ve eksi yük bulunmalıydı.. Bu bilgiler ışığında, Thomson, atomu içinde gömülmüş halde elektronlar bulunan artı yüklü bir küre olarak öneriyordu. Bu atom modeli uzun yıllar boyunca atom kuramı olarak kabul gördü.

α tanecikleri saçılması deneyinin sonuçlarını açıklayabilmek amacıyla, Rutherford atom yapısı için yeni bir model oluşturdu ve bu modelde atomun büyük bir kısmının boşluktan oluştuğunu öneriyordu. Böyle bir yapıda α taneciklerinin çoğu altın yaprağının içinden sapmadan yada çok az sapma yaparak geçebilirdi. Rutherford atomdaki artı yüklerin tümünün atomun içinde yoğun ve merkezi bir çekirdekte odaklandığını önerdi.

Böylece saçılma deneylerinde, herhangi bir α taneciği bir atomun çekirdeğine yaklaştığında büyük bir itici kuvvetle karşı karşıya kalıyor ve büyük bir sapma yapıyordu. Ayrıca, doğrudan doğruya bir çekirdeğe doğru hareket eden bir α taneciği hareket yönünü tam tersine çevirecek kadar büyük bir itici güce maruz kalacaktır. Çekirdekteki artı yüklü taneciklere proton adı verilir.Yapılan başka deneylerde ise, bir protonun yükünün büyüklük olarak bir elektronun yüküne eşit olduğu ve protonun kütlesinin de 1.67262×10-24 g, yani elektronun kütlesinin 1840 katı kadar olduğu bulunmuştur.

2.2.4. Nötron Rutherford’un atom yapısı modeli önemli bir sorunu çözümsüz bırakıyordu. Rutherford’un zamanında, en basit atom olan hidrojenin bir tane proton, helyum atomunun ise iki tane proton içerdiği biliniyordu. Bu nedenle helyum atomunun kütlesinin hidrojen atomunun kütlesine oranı 2:1 olmalıydı. Oysa gerçekte bu oran 4:1 idi. Hidrojen Atomu Helyum Atomu

Rutherford ve diğer araştırmacılar atom çekirdeğinde, diğer bir atom altı tanecik bulunması gerektiğini düşündüler. Bunun kanıtı 1932’de James Chadwick tarafından sağlandı. Chadwick ince bir berilyum levhasını α tanecikleri ile bombardıman ettiğinde, berilyum metali α ışınlarına benzeyen çok yüksek enerjili ışınlar yayımladı.. Daha sonraki deneyler,deneyler, bu ışınların protonun kütlesinden biraz daha büyük bir kütleye sahip, elektrik yükü taşımayan nötür taneciklerden oluştuğunu gösterir. Chadwick bu taneciklere nötron adını verdi.

2.3. Atom Numarası, Kütle Numarası ve İzotoplar Bir elementin atomlarının çekirdeklerinde bulunan protonların sayısına atom numarası (Z) denir. Nötr bir atomda protonların sayısı elektronların sayısına eşittir. Bu nedenle, atom numarası aynı zamanda atomda bulunan elektronların sayısını da gösterir. Kütle numarası (A) bir elementin atomlarının çekirdeklerinde bulunan protonproton veve nötronlarınınnötronlarının sayısınınsayısının toplamıdırtoplamıdır.. Bir atomda bulunan nötronların sayısı, kütle numarası ile atom numarasının farkına eşittir (A-Z).

2.4. Periyodik Çizelge Günümüzde bilinene elementlerin yarısından çoğu 1800 ile 1900 yılları arasında bulunmuştur. O yıllarda birçok elementin benzer özellikleri olduğu görülmüştür. Elementlerin fiziksel ve kimyasal davranışlarındaki periyodik Dmitri Ivanovich Mendeleyev benzerliklerin anlaşılması, yapı ve (1834-1907) özellikleri ile ilgili çok miktarda bilginin sınıflandırılması gerekliliği, periyodik çizelgenin oluşturulmasına yol açmıştır.

PERİYODİK ÇİZELGE

2.5. Moleküller ve İyonlar Molekül , en az iki atomun belli bir düzende kimyasal kuvvetlerle bir arada tutulduğu atomlar topluluğudur. Bir molekülde tek bir elementin atomları bulunabileceği gibi, iki veya daha çok sayıda elementin atomları sabit oranlar yasasına uygun biçimde belli bir oranda birleşmişolarak da bulunabilir. H2 olarak gösterilen hidrojen molekülüne diatomik (iki atomlu) molekül denir.Moleküllerin büyük çoğunluluğu ikiden çok atom içerir,içerir, bunlar üç tane oksijen atomundan oluşan ozonda olduğu gibi aynı elementin atomları olabilir ya da iki veya daha çok sayıda elementin atomlarının birleşmesinden oluşabilir. İkiden çok atom içeren moleküllere poliatomik (çok atomlu) moleküller denir.

Pozitif veya negatif yükü olan bir atoma yada atomlar grubuna iyon denir. Nötür bir atomdan bir yada daha çok sayıda elektronun kaybedilmesi sonucunda pozitif yüklü bir iyon, yani katyon oluşur. Örneğin sodyum atomu kolaylıkla bir elektron kaybederek sodyum katyonuna dönüşebilir. Diğer taraftan anyon, elektron sayısındaki artış nedeniyle, yükü eksi olan bir iyondur. Örneğin, klor atomu bir elektron alarak, klorür iyonuna dönüşür.

2.6. Kimyasal Formüller Kimyacılar moleküllerin ve iyonik bileşiklerin bileşimini kimyasal simgelerle ifade etmek için kimyasal formüller kullanılır. 2.6.1. Molekül Formülü Molekül formülü bir maddenin en küçük biriminde bulunan elementlerin atom sayısını tam olarak gösteren formüldür. Formüllerdeki alt indis herhangi bir elementinelementin atomatom sayısınısayısını gösterirgösterir.. H O C H CH OH CH Cl 2 2 4 3 2 2 Oksijen (O ) ve ozonun (O ), oksijen elementinin allotropları’dır. 2 3 Allotrop, bir elementin iki veya daha çok sayıdaki farklı biçimlerine verilen isimdir.

Molekül Modelleri Günümüzde iki tip standart molekül modeli kullanılmaktadır. Top-çubuk modeli ve uzay-dolgu modeli.

2.6.2. Kaba Formüller Kaba formül bir molekülde hangi elementlerin bulunduğunu ve bu elementlerin atomlarının en basit tam sayılı oranını gösterir, ancak moleküldeki atomların gerçek sayısını göstermeyebilir.

2.6.3. İyonik Bileşiklerin Formülleri Đyonik bileşiklerin formülleri çoğu zaman kaba formülleri ile aynıdır. Çünkü iyonik bileşikler bağımsız molekül birimlerinden oluşmazlar. Örneğin, katı sodyum klorür ağ örgü yapıda dizilmiş eşit sayıda Na + ve Cl- iyonlarından oluşur. Böyle bir bileşikte katyonların anyonlara oranı 1:1 olup bileşik elektriksel olarak yüksüzdür. Her bir Na+ iyonunun etrafında altı tane Cl- iyonu vardır, ayrıca bunun terside geçerlidir. Bu nedenle, NaCl sodyum klorür’ün kaba formülüdür.

İyonik bileşiklerin elektriksel açıdan nötür olabilmeleri için birim formüldeki anyon ve katyon yüklerinin toplamı sıfır olmalıdır. Katyon ve anyonun yükleri farklı ise; katyonun alt indisi sayısal açıdan anyonun yüküne, anyonun alt indisi ise katyonun yüküne eşittir. Katyon ve anyon yükleri birbirine eşit ise alt indislere gerek yoktur.

2.7. Bileşiklerin Adlandırılması 2.7.1. İyonik Bileşikler Önemli bir iyon olan amonyum iyonu (NH4)+ dışında incelediğimiz tüm katyonlar metal atomlarından kaynaklanır ve metal katyonlarında adlarını elementlerinden alırlar. Đyonik bileşiklerin çoğu yalnızca iki elementten oluşan ikili bileşiklerdir. Đkili iyonik bileşiklerde önce metal katyonunun adı söylenir, sonrada ametal anyonun adı verilir. Buna göre NaCl’nin adı sodyum klorürdür. Anyonun adı, element adına (klor) “ür” son eki eklenerek oluşturulur.

Bazı metaller özellikle geçiş metalleri birden çok katyon oluşturabilirler. Örneğin demir iki tane katyon oluşturur: Fe2+ ve Fe3+. Aynı elementin farklı katyonlarını belirtmek için Romen rakamları kullanılır. Örneğin artı bir yük için Romen rakamı I, artı iki yük için Romen rakamı II gibi. Bu sisteme göre Fe2+ ve Fe3+ iyonları demir(II) ve demir(III), ve Fe2+ içeren FeCl2 ile Fe3+ içeren FeCl3 ise sırasıyla demir-iki klorür ve demir-üç klorür olarak adlandırılır. Mn2+ : MnO mangan(II) oksit Mn3+ : Mn O mangan(III) oksit 2 3 Mn4+ : MnO2 mangan(IV) oksit

2.7.2. Moleküler Bileşikler Moleküler bileşikler belirli ve bağımsız molekül birimleri içerirler. Moleküler bileşikler genellikle ametallerden oluşurlar. Birçoğu ikili bileşiklerdir. Đkili moleküler bileşiklerin adlandırılması ikili iyonik bileşiklerin adlandırılmasına benzer. Formüldeki ilk elementin adını söyleyip ikinci elementin adının köküne “”ürür”” son eki koyarız.. HCl: Hidrojenklorür SiC: Silisyumkarbür

İki element birden çok sayıda bileşik oluşturabilir. Bu durumlarda, bileşiklerin adlandırılmasında ortaya çıkacak karmaşayı önlemek için, bileşikteki elementlerin atom sayısı yunanca ön ekleri ile belirtilir. CO : Karbon monoksit CO : Karbon dioksit 2 SO : Kükürt trioksit 3 N O : Diazot tetroksit 2 4

Adlandırmada ön ekler kullanılırken aşağıdaki kuralları uygulamak yararlı olur; • Birinci element için mono ön eki kullanılmaz. Örneğin PCl3 için monofosfor triklorür yerine fosfor triklorür denir. • Oksitler adlandırılırken bazen ön ekteki a atlanır. Örneğin N O diazot teraoksit 2 4 yerine diazot tetroksit olarak adlandırılır. Hidrojen içeren moleküler bileşikler adlandırılırken, yunanca ön ekler kullanılmaz. Geleneksel olarak bu bileşikler yaygın olarak bilinen ve sistematik olmayan adları ile yada hidrojen atomu sayısının belirtilmediği adlarla anılırlar:

2.7.3. Asitler ve Bazlar Asitlerin Adlandırılması + Asit suda çözündüğünde hidrojen iyonları (H ) veren bir madde olarak tanımlanabilir. Asitlerin formülleri bir anyon ile hidrojen atomu içerir. Adları “ür” ile biten anyonların asitleri “hidro” ön eki ve “ik” son eki içerirler.

Hidrojen oksijen ve bir diğer element içeren asitlere oksiasitler denir. Oksiasitlerin formülleri yazılırken genellikle önce H, sonra merkez elementi ve en son da O yazılır. HNO Nitrik asit 3 H SO Sülfirik asit 2 4 Çoğu zaman iki veya daha çok sayıda oksiasitte aynı merkez atomu,atomu, ancak farklı sayıda O atomu bulunur. Adları “ik” ile biten oksoasitlerden başlayarak, bu tür bileşiklerin adlandırılması için aşağıdaki kurallar uygulanır. 1- “ik” asidine bir tane O atomunun eklenmesi: Bu durumda asit “per….ik” asit olarak adlandırılır. Örneğin, HClO3 asitine (“ik”) bir tane O atomu eklenmesi ile klorik asit perklorik asit e dönüşür.

2- “ik” asidinden bir tane O atomunun çıkarılması: Bu durumda asit “öz” asidi olarak adlandırılır. Buna göre, nitrik asit, HNO , nitröz asite, HNO dönüşür. 3 2 3- “ik” asidinden iki tane O atomunun çıkarılması: Bu durumda asit “hipo….öz” asiti olarak adlandırılır

Oksianyonlar adı verilen oksiasit anyonları aşağıdaki kurallara göre adlandırılır: 1- “ik” asidinden H iyonlarının hepsi çıkarıldığında, geriye kalan anyon adı “at” ile sonlandırılarak adlandırılır. Örneğin, H CO ’ten kaynaklanan CO 2-, karbonat 2 3 3 olarak adlandırılır. 2- “öz” asidinden H iyonlarının hepsi çıkarıldığında, anyon adı “it” ile sonlanır. Bu nedenle HClO2 nin anyonu ClO2-, klorit anyonudur. 3- Asitten bir yada daha çok sayıda H iyonu çıkarıldığında oluşan anyon adı, anyonda kaç hidrojen olduğunu belirterek adlandırılır. Örneğin, fosforik asitten kaynaklanan anyonlar şunlardır; H PO Fosforik asit 3 4 H PO – Dihidrojen fosfat 2 4 HPO42- hidrojen fosfat PO 3- Fosfat 4

Bazların Adlandırılması Baz, suda çözündüğünde, hidroksit iyonları (OH-) veren bir madde olarak tanımlanır NaOH Sodyum hidroksit KOH Potasyum hidroksit Ba(OH)2 Baryum hidroksit 2.7.4. Hidratlar Bileşimlerinde belli sayıda su molekülü bulunan bileşiklerdir. Örneğin normal haldeki bakır(II) sülfatta, bakır(II) sülfat birimleri beş tane su molekülü içerir. Bu bileşiğin sistematik adı bakır(II) sülfat pentahidrat olup, formülü CuSO .5H O dur. Bu bileşikteki su molekülleri bileşiğin ısıtılması ile 4 2 uzaklaştırılabilir ve bazen susuz bakır(II) sülfat adı verilen CuSO4 elde edilir.