Etiket Arşivleri: SUGAR

Production Process in Sugar Industry


Presented  by:

M.Mustafeez ur Rehman Wasif Naeem.


  • Sugar is a vital ingredient in most of out daily consumption articles. For example: Soft drinks, juices, tea, biscuits, sweetmeats, bakery items ,deserts, etc.

  • It is a vital need more than a want to our society.


  • The Second Largest agro based industry after Textiles.

  • Pakistan is an important cane producing country and is ranked fifth in world cane acreage and 15th in sugar production.

  • Its share in value added of agriculture and GDP are 3.4 percent and 0.7 percent, respectively


  • During the year 1997-1998 there were 75 sugar mills in the country and it produces.

  • Sugarcane is grown on over a million hectares and provides the raw material for Pakistan’s 75 sugar mills.

  • Dewan Sugar Mills Limited established as a public limited company in 1982 is one of the largest sugar mills of Pakistan having a cane crushing capacity of over 9,000tons per day.



  • Cleaning

  • Slicing

  • Juice extraction pressing

  • Purification

  • Evaporation

  • Crystallization




  • After the cane arrives at the mill yards, it is mechanically unloaded, and excessive soil and rocks are removed.

  • The cane is cleaned by flooding the carrier with warm or by spreading the cane on agitating conveyors that pass through strong jets of water and combing drums.

  • At this point, the cane is clean and ready to be milled.


*After the cleaning process, a machine led by a series of rotating knives, shreds the cane into pieces. This is known as “grinding.“

* During grinding, hot water is sprayed on to the sugarcane to dissolve any remaining hard sugar. The smaller pieces of cane are then spread out on a conveyer belt.


*The shredded pieces of sugarcane travel on the conveyer belt through a series of heavy-duty rollers, which extract juice from the pulp.

* The pulp that remains or “bagasse” is dried and used as fuel. The raw juice moves on through the mill to be clarified.


*The juice from the mills, a dark green color, is acid and turbid. The clarification (or defecation) process is designed to remove both soluble and insoluble impurities (such as sand, soil, and ground rock) that have not been removed by preliminary screening.

* The process employs lime and heat as the clarifying agents.


  • Carbon dioxide and the milk of a lime are added to the liquid sugar mixture and it is heated to the boiling point, as the process of clarifying begins.

  • As the carbon dioxide travels through the liquid it forms calcium carbonate, which attracts non-sugar debris (fats, gums, and wax) from the juice, and pulls them away from the sugar juice. The juice is then pushed through a series of filters to remove any remaining impurities.


*The muds separate from the clear juice through sedimentation. The non-sugar impurities are removed by continuous filtration.

* The final clarified juice contains about 85 percent water and has the same composition as the raw extracted juice except for the removed impurities.


  • To concentrate this clarified juice, about two-thirds of the water is removed through vacuum evaporation.

  • Generally, four vacuum-boiling cells or bodies are arranged in series so that each succeeding body has a higher vacuum (and therefore boils at a lower temperature).

  • The syrup leaves the last body continuously with about 65 percent solids and 35 percent water.


  • The crystallization process takes place in vacuum pans which boil the juice at lower temperatures under vacuum.

  • When the juice concentrates it is ‘seeded’ with tiny sugar crystals which provide the nucleus for larger crystals to form and grow. When the crystals reach the desired size the process is stopped.

  • The remaining mixture is a thick mass of large crystals, which is sent to a centrifuge to spin and dry the crystals. The dried product is raw sugar, still inedible.


  • Raw sugar is transported to a Cane Sugar Refinery for the removal of molasses, minerals and other non-sugars, which still contaminate the sugar. This is known as the purification process.

  • Raw sugar is mixed with a solution of sugar and water to loosen the molasses from the outside of the raw sugar crystals, producing a thick matter known as “magma.”


  • Large machines then spin the magma, which separate the molasses from the crystals. Crystals are promptly washed, dissolved and filtered to remove impurities.

  • The golden syrup which is produced is then sent through filters to remove the color and water. What’s left is a concentrated, clear syrup, which is again fed into a vacuum pan.


*Once the final evaporation and drying process is done, screens separate the different sized sugar crystals. Large and small crystals are packaged and shipped, labeled as white, refined, sugar.


  • Sugar industry has a potential to achieve heights in Pakistan if major steps are taken into consideration in this regard.

  • Sugar industry being the second largest agro based industry faces a lot of problems and if steps for its betterment are not taken this industry can collapse which will result in importing sugar from foreign countries and would eventually result in an increase in the trade deficit.

  • Other than sugar we can diversify and produce Ethanol which has been proved to be very helpful in developing economies and ease our import bill.

Analysis of Reducing Sugars

Analysis of Reducing Sugars


Sugars are members of the carbohydrate family. Examples include glucose, fructose and sucrose. Some sugars can act as reducing agents and these sugars will contain an aldehyde functional group. This property can be used as a basis for the analysis of reducing sugars. For example Fehling’s solution contains copper (II) ions that can be reduced by some sugars to copper (I) ions. This reaction can be used for the quantitative analysis of reducing sugars.

Practical Techniques

You will need to find out about volumetric analysis (titrations) and how to make up accurate solutions.

Where to start

Fehling’s solution can be added to a solution of the sugar whose concentration is known. As the Fehling’s solution is added the blue copper (II) ions will be reduced to copper (I) ions. These will precipitate out of solution as red copper (I) oxide. The resulting solution will be colourless. A titration can be carried out to determine an equivalent amount of the sugar to the Fehling’s solution. The end point would be when the blue colour has just disappeared.

Possible Investigations

• Investigate the accuracy of this technique – you could assess how critical it is to boil the sugar solution and how critical it is to have “fresh” Fehling’s solution. What is the lowest concentration of glucose that can be detected? How reproducible are the results?

• Methylene blue can be used to indicate the end point more clearly. A few drops can be added just before the endpoint is reached. The end point is indicated by the disappearance of the methylene blue colour. Does this make the titration more accurate?

• Sources indicate that this method is affected by the presence of proteins – is this the case?

• Can this method be used to determine the amount of reducing sugars present in foods?

When starch is hydrolysed with hydrochloric acid it is broken down into sugars. Can you adapt the method to determine the extent of the hydrolysis under different conditions?

• A variation of this method is to add excess of the Fehling’s solution to the sugar and to determine the amount of copper (II) left in solution. This can be done by acidifying with dilute sulphuric acid and then adding excess potassium iodide. The iodine that is liberated can be titrated with sodium thiosulphate solution. A blank titration can be carried out without the sugar. The difference can be used to determine the amount of Fehling’s that has reacted with the sugar.

• The addition of 3,5-dinitrosalicylic acid to glucose will produce a compound that absorbs light strongly at 540nm. Could you find a method of analysing for glucose using a colorimeter? Can you use this method to find the concentration of glucose in soft drinks?

• Glucose is optically active and the concentration of a solution can be determined using a polarimeter. How does the accuracy of this method compare the to method with Fehling’s solution?


Sugar Cane and Sugar Beet

Sugar Cane and Sugar Beet
Sugar Cane and Sugar Beet are processed in order to produce many different kinds of sugar-caster, granulated, dark brown, soft brown, preserving sugar, muscovado, icing sugar,demerara, sugar cubes and molasses.
Eating too much sugar
Eating too much sugar leads to the build up of plaque and tooth decay. Plaque is a sticky substance made up of bacteria which is found on the teeth. The bacteria breaks down sugar and produces acid that destroys the enamel of teeth.
Heating sugar
When a sugar solution is heated to a very high temperature it thickens and turns brown adding flavour and colour. This is known as caramelisation.
If the solution is overheated it blackens and produces an unpleasant taste.
Dextrinisation takes place when starch is cooked in a dry heat such as the grill or oven. It is broken down to simple sugar called dextrin.
Functions of sugar
Sweetens- cakes, biscuits, cooked fruit. Adds colour-browning cakes by caramelisation and dextrinisation.
Flavour enhancer- tomatoes, baked beans, canned vegetables
Aerates-traps air when creamed with fat Decorates-sprinkled sugar, butter icing, icing
Speeds up fermentation-provides food for the yeast
Alternatives to sugar
Artificial sweeteners are low in calories. Manufacturers often use a mixture of artificial sweeteners Bulk sweeteners are similar in taste and are used in similar amounts in recipes.
Intense sweeteners are used in small amounts as they are much sweeter than sugar.

Beyaz Şekerde İletkenlik Külü Tayini

Beyaz şekerde iletkenlik külünü tespit etmek.

Bilinen konsantrasyonda şeker çözeltisinin özgül iletkenliği ölçülür. Faktör yardımı ile kül miktarına geçilir. Beyaz şeker için 28 g/100 g konsantrasyonu kullanılır.

S.C.T metre

0,01 N Potasyum Klorür: 500 oC ?de ısıtılarak suyu uzaklaştırılmış KCl den 745,5 mg litreye tamamlanır.
0,0002 N Potasyum Klorür : 0,1 N KCl çözeltisinin 10 mL si 500 mL ye tamamlanır. Bu çözeltinin iletkenliği kullanılan suyun iletkenliği çıkarıldıktan sonra 20 oC de 26.6 ± 0.3 µS/cm dir.

Bütün çözeltilerin hazırlanmasında iletkenliği 2 µS? in altında olan iki kere damıtılmış su kullanılmalıdır. 100 mL lik ölçü balonunda 31.3 g şeker suda çözülür. Hacim 100 mL ye tamamlanır. (20,8 ±0,1 g şeker , 100 g çözelti verecek şekilde damıtık suda çözülerek aynı çözelti hazırlanabilir) İyice karıştırıldıktan sonra 20 oC de iletkenliği ölçülür. 0,0002 N potasyum klorür çözeltisi ile doğruluk kontrol edilir.

C28 = C1 – 0.35 C2

C28 = 28 g / 100 g şeker çözeltisi için düzeltilmiş iletkenlik , µS/cm
C1 = Numunenin 20 oC de ölçülen iletkenliği , µS/cm
C2 = Suyun 20 oC de ölçülen iletkenliği , µS/cm

İletkenlik Külü % = 6 x 10 – 4 x C28

28 g /100 g şeker çözeltisi için sıcaklık düzeltmesi, her derece için % 2.6 dır. 20 oC nin altında eklenir, 20 oC nin üstünde çıkarılır.

Kaynak :

TS 861 / Kasım 1982

Sugar Production Control

  • Sugar production control

  • A case study for large scale industrial control

  • outline

  • Desciption of the sugar plant

  • Description of the evaporation process

  • Control problems in the evaporation process


Make a contol concept for the evaporation process

  • Sugar production

  • Extraction of sugar from sugar beets

  • Filtration of sugar juice

  • Concentration of the sugar juice through a multiple-effect evaporator’

  • Crystallization through boiling and graining

  • Separation of sugar crystals and molasses by centrifugation

  • The evaporation process

  • Energy consumption

  • Juice flow in 133 kg/sec

  • Juice flow out 28 kg/sec

  • Juice brix in 15.5

  • Juice brix out 72

  • Control problems in the evaporation process

  • The output brix of the syrup must be high as the cheapest evaporation is carried out in the evaporation process

  • To avoid spontanous crystallization in the pipes the output brix must be stable

  • A adequate steam pressure for the crystallization process must be secured

  • There must be a minimization of the energy consumption

  • The plant must be robust to flow variations

  • Control characteristics in sugar production

  • Sugar production is a combination of continous and batch process

  • The sub-systems are strongly coupled by the flow of sugar juice and the flow of heating energy.

  • In each sub-system there are several inputs, outputs and disturbances

  • Control characteristics in sugar production

  • A large number of parameters and variables correlates to some extent determining the dynamics of the plant

  • The correlation of parametersand variables makes it difficult to survey the important links in the process

  • It can be difficult to distinguish inputs, outputs and disturbances according to the control strategy

  • Demands for the control system development concept

  • it must be able to handle MIMO systems

  • It may rely on a hierarchic decomposition ot the control goals

  • The modelling method must be able to describe the functionality of the plant

  • It must be possibel to identify relevant control loops without deveolpment of an entire matematical model

  • It must be possibel to connect the goal description and the functional description

  • Modelling for control system design

  • Modelling by a mathematical description of the static and dynamic relations according to system apparatus

  • Modelling by a functional description of the plant

  • Hierarchic goal oriented functional description

  • The goals due to plant functionallity, production rate, safety aspects and economy must be identified

  • The goals must be arranged hierarchic due to the internal supporting relations

  • the plant functionality must be described due to the flow of material, energy and information

  • The low level goals in the hierarchy must be related to plant functionallity

  • Idiomatic control

  • The basic idea is to setarate the system into a number of independent subsystems each controllable using well suited method

  • Basic idioms are:

  • Feedback, feedforward, ratio control, cascades, decoupling etc

  • Exercise

  • Design a control system for the evaporation process.

  • You can use the described hierachic structure and elements from the fist mm

Toplam Şeker Analizi

Bu metot bisküvi, domates salçası, fındık ezmesi, gazoz, sakız, toz meşrubatta Toplam Şeker Analizinin yapılmasını kapsar.

Glikoz ve fruktozun indirgen özelliğinden istifade ederek, alkali tartaratlı Cu++ çözeltisinin Cu+ ‘ e indirgenmesi yoluyla, glikoz ve fruktoz miktarının bulunması esasına dayanır.

3.Kısaltma Ve Tanımlar
TS = Toplam Şeker
İŞ = İnvert Şeker

4.Güvenlik Ve Sağlık Uyarıları
Hidroklorik Asit: Kesinlikle deri ile temas ettirilmemeli ve solunmamalıdır.
Sodyum Hidroksit: Kesinlikle deri ile temas ettirilmemelidir.

5.Dikkat Edilmesi Gereken Noktalar
Deneyler, en az iki paralel numune üzerinde yapılmalı, deneylerde ve reaktiflerin hazırlanmasında damıtık su veya buna eşdeğer saflıkta su kullanılmalıdır. Kullanılan bütün kimyasal maddeler analitik saflıkta olmalıdır.

6.Personel Yeterliliği
Analizde görev alacak personele, analizi tek başlarına gerçekleştirmeden önce en azından 1 hafta bu konuda eğitim verilmelidir.

7.Alet-Ekipman Ve Aksesuarlar
• Su banyosu (Gerhardt)
• Hassas terazi (Labor Aliance 240 P)
• Manyetik karıştırıcı ve ısıtıcı (Gerhardt)
• Büret, 50 mL’lik, 0, 1 mL taksimatlı
• Bek
• Süzgeç kağıdı
• Hot plate veya çukur pik tabla
• Üçgen saç ayak
• Magnet , orta büyüklükte
• Ölçü silindiri, 50 mL’lik
• 5.0; 10,0; 20,0 ve 50,0 mL’lik pipetler
• Balon, dibi yuvarlak, ateşe dayanıklı, 400 mL’lik
• Ölçülü balonlar, şilifli, kapaklı, 100, 200, 250, 500 ve 1000 mL’lik
• Erlenmayer, 150 mL’lik
• Cam boncuk
• Kronometre
• Renkli muhafaza şişesi, şilini, kapaklı, 250, 500 ve 1000 mL’lik

8. Kimyasal Maddeler
Analiz sırasında, yalnızca aşağıda belirtilen analitik saflıktaki kimyasal maddeler ve damıtık su kullanılmalıdır.
• Hidroklorik Asit (HC1)
• Bakır (II) Sülfat Pentahidrat (CuS04 . 5H20)
• Sodyum Potasyum Tartarat Tetrahidrat (Ca4H4NaK.4H20)
• Sodyum Hidroksit (NaOH)
• Asetik Asit (CH3COOH)
• Metilen Mavisi (Cı6Hı8NaCl)
• Çinko Asetat Dihidrat [Zn(CH3COO).2H2O] • Sakaroz (C12H22O11)
• Potasyum Ferrosiyanür Trihidrat [K4Fe(CN)6.3H2O] • Benzoik Asit (C7 H6 O2)

9. İşlem
Numune Hazırlama:
Bisküvi : En az 250g bisküvi elle kırılarak göz açıklığı İmm olan elekten geçecek büyüklükte öğütülür ve oda sıcaklığında saklanır. Oda sıcaklığındaki analiz numunesinden alınır ve toplam şeker analiz işlemine başlanır.

Sakız : lOg sakız bir beher içerisinde tartılıp üzerine 50mL sıcak su ilave edilir. 50-60°C lıktaki su banyosunda 1 saat süreyle bekletilir.
Fındık Ezmesi : Analiz numunesinden yaklaşık 5g deney numunesi alınır. Eter ile ekstrakte edildikten sonra işleme başlanır. Numuneler yukarıdaki hazırlama tekniğine uygun olarak hazırlandıktan sonra l0mL alınarak 200mL’ lik ölçülü balona konulur. Üzerine 100 mL damıtık su ile 2 mL doymuş Kurşun Asetat çözeltisi katılır ve çalkalanır. Meydana gelen tortunun dibe çökmesi için bir süre beklenir. Sonra 200 mL’ ye tamamlanarak katlı filtre kağıdından berrak süzüntü geçinceye kadar süzülür. ( Berrak olarak elde edilen bu süzüntü üzerine, birkaç tane potasyum okzalat kristali konulduğunda bulanıklık meydana gelmezse durultma iyi yapılmış demektir. Aksi halde durultma yeniden yapılmalıdır.) Berrak süzüntüden 50mL alınarak l00mL’ lik ölçülü balona konur ve üzerine 5 mL HCİ katılır. Sonra içerisine bir termometre ve balonun boyuna da kurşun halka geçirilerek 70°C deki su banyosuna konulur. Balon için 67°C ye gelene kadar beklenir. Sonra bu sıcaklıkta 5 dk. tutulur. Bu süre içerisinde balon içi sıcaklığının hiçbir zaman 70°C yi geçmemesi gerekir. Bu ısıtma sırasında çözeltideki sakkaroz konulan HCL’ nin etkisiyle parçalanarak invert şeker haline gelir. Sonra balon, sıcak su banyosundan alınarak akar soğuk su altında 20°C ye kadar soğutulup üzerine belirteç olarak birkaç damla fenol fitaleyn damlatılarak hafif pembe renk meydana gelinceye kadar 6 N NaOH ile nötralize edilir. Sonra balon işaret çizgisine kadar damıtık su ile tamamlanarak çalkalanır. Bunda ‘ Lane Eynone ‘ metodu ile toplam şeker tayini yapılır. Ayrıca HCİ ile parçalanmamış berrak çözelti ile invert şeker tayini yapılır. Buradan sakaroz miktarı aşağıdaki formül ile hesaplanır.

Sakaroz miktarı(%)= 0,95 ( A – B )
A ; Toplam şeker miktarı
B ; İnvert şeker miktarı
İnvert şeker tayini :
İnvert şeker tayini yapılacak numuneden l0g alınarak litrelik bir ölçülü balona konulur ve damıtık su ile balon işaret çizgisine kadar tamamlanır. Bulanık ise süzülerek berraklaştırılır, sonra titrasyon yapılmak üzere bürete doldurulur. Diğer yandan bir erlene 5 mL Fehling A ve 5 mL Fehling B konularak karıştırılır. Alev üzerinde kaynamaya bırakılır. Kaynama başlayınca, bürete doldurulmuş olan numunenin invert şeker miktarı titrasyonla bulunur.

10. veri analizi ve sonuçların hesaplanması
İnvert Şeker ( g/ kg ) =——————–
Burada ;
V2 = Numunenin seyreltildiği son hacim ( mL )
F = Fehling çözeltilerinin faktörü
V = Titrasyonda harcanan numune çözelti miktarı ( mL ) m = Alman numune ( g )
örnek: 10 mL Fehling için standart invert şeker çözeltisinde 18 mL harcansa, bunun şeker karşılığı 18×3,33=59,94mg eder. Diğer yandan yine 10 mL Fehling için seyreltilmiş şeker şurubundan 16 mL harcansa, bu duruma göre seyreltilmiş şeker şurubunun 16 mL’ sinde 59,94 mg invert şeker var demektir.
Buradan da, 16 mL şeker şura bunda 59,94 mg invert şeker varsa 100 mL’ de 374,6 mg invert şeker var demektir. Bu, 10 mL alınarak 1000 mL’ ye tamamlanan şeker surubunundur. O halde bu şurubun invert şeker miktarı 37460 mg veya % 37,46′ dır.

Şeker Kaynakları

Şeker Kaynakları

Çay şekeri yani sakkaroz bitkisel kaynaklardan elde edilir. Önemli şeker mahsullerinden olan şeker kamışı (Saccharum spp.) ve şeker pancarındaki (Beta vulgaris) şeker, bitkinin kuru ağırlığının %12–%20 kadarını oluşturabilir. Hurma ağacı (Phoenix dactylifera), sorghum (Sorghum vulgare) ve şeker akçaağacı (Acer saccharum) ise önemi daha az ticari şeker ürünleri içerisindedir.

Şeker kamışı

Şeker kamışı (Saccharum), uzun boylu otların 6 ile 37 türü arasında bulunan ve Pasifik ve Eski Dünya tropik bölgelerinin ılıman ikliminde yetişen bir cinstir. Sağlam ve iri yapılı gövdeleri, buna eklenmiş lifli sapları şeker bakımından zengindirler. Şeker kamışının yetişen bütün türleri ve önemli ticari kültürleri başlıca Saccharum officinarum, S. spontaneum, S. barberi and S. sinense ‘den oluşan kompleks melezlerdir.

Processing Lines “Sugar” Sugar Cane ( Hector Garza )

“Sugar” Sugar cane

What we call sugar, the chemist knows as ‘sucrose’, one of the family of sugars otherwise known as saccharides in the grouping called carbohydrates
Sucrose, C12H22O11, is a disaccharide, a condensation molecule made up of two glucose molecules
The process whereby plants make sugars is photosynthesis.
12 CO2 + 11 H2 O = C12 H22 O11 + 12 O2
carbon dioxide + water = sucrose + oxygen
Sugar cane process
The sugar process is divided
1 Entry or transportation of the sugar cane
2 Milling
3 Clarification
4 Evaporation
5 Crystallization
6 Separation
7 Refining
8 Drying
9 Storage