Etiket Arşivleri: Meyve Sebze Teknolojisi

Meyve ve Sebzelerin İşlenmesinde Oluşan Değişiklikler ( Dr. İbrahim GÜLSEREN )

Meyve ve Sebzelerin İşlenmesinde Oluşan Değişiklikler

GIM 307 – Meyve Sebze Teknolojisi
İbrahim Gülseren, Ph.D.
Geçen Hafta
Kompozisyon: Organik asitler; vitaminler; fenolik bileşikler; fenolik asitler (hidroksisnamik ve hidroksibenzoik asitler; flavonoidler (Antosiyanidinler; kateşinler; izoflavonoidler, vb); mineral maddeler; aroma ve renk maddeleri.
Ön işlemler: Hammaddenin yıkanması, ayıklaması ve sınıflandırılması; kabuk soyma; çekirdek çıkarma; haşlama.
Meyve sebzelerin işlenmesinde oluşan değişiklikler: Hidrolitik değişiklikler; oksidatif değişiklikler; diğer kimyasal değişiklikler; mikrobiyolojik değişiklikler.
Hidrolitik Değişiklikler
Glikozid, ester ve amidlerin parçalanması
Inversiyon (asitler + ısıtma ya da invertaz) – Sitrik ya da askorbik kullanılabilir.
Pektolitik enzimler (poligalakturonaz ve pektinesteraz)
Lipaz (asitliğin yükselmesi) – Ca++ – Asitler ayrılır. aw (0.25-0.3’e kadar aktif – kuru ürünler).
Fosfolipaz – fosfolipidler
Proteazlar – proteaz inhibitörleri (baklagiller)
Mikroorganizma proteazları
Oksidatif Değişiklikler
Mekanik zedelenmeler ve enzimatik esmerleşme – fenolik bileşikler – pembeden mavimsi-siyaha kadar
Elmanın kararması – Fenolik bileşikler + hava + oksidasyon enzimleri (PPO) –
Bakır içeren enzimlerdir ve hücre kloroplastlarında bulunurlar. pH optimum – Genellikle 6-7 arası.
Monofenol ve o-difenollerin o-kinonlara oksidasyonu (başka enzimler de katılabilir – kateşolaz, kresolaz).
Oksidatif Değişiklikler -2
o-kinonlar – Renksiz – Askorbik asit, bu bileşikleri o-fenollere çevirebilir (redüksiyon = indirgeme). Üstelik oksijeni de indirgeyebilir.
Askorbik asit tükenince, tepkimeler devam eder.
Kısmen peroksidaz da devreye girebilir. Meyve ve sebzelerdeki ısıl direnci en yüksek olan enzimdir (kalite karakteristiği; F ve z-değerleri). Oksijeni hidroperoksitlerden, fenoliklere, renk maddelerine vb. taşır.
Peroksidaz Aktivitesi
Yetersiz haşlama – Tat ve aroma bozulmaları
%10 kalıntı peroksidaz aktivitesi (bezelyeler: %2-6,3; yeşil fasulyeler: %0,7-3,2; karnabahar: %2,9-8,2)
Yüksek sıcaklık-Kısa süre (HTST) işlemler – 121°C (örneğin, plakalı ısı değiştiriciler)
Mikroorganizmaların termal ölümü – Peroksidaz inaktivasyonu
Termal inaktivastiyon (tersinmez) – PPO – pH optimum 4-7
Düşük sıcaklıklar – Enzim aktivitesi geçici olarak azalır (donmadan önce haşlama).
Peroksidaz Aktivitesi – 2
Sitrik asit (genelde %0.1 civarı) – Bakır ile kelat oluşumu
İyon ya da moleküllerin metal bağlayarak oluşturdukları yapıların özel bir çeşidine «kelat» denir.
Peroksidaz Aktivitesi – 3
Sitrik asit (genelde %0.1 civarı) – Bakır ile kelat oluşumu
L-askorbik asit – %0,2-0,5 – Oksijenin de indirgenmesi – Tadın korunumu
Sülfürlü bazı bileşikler; şekerler – Esmerleşmelerin önlenmesi
Turunçgiller: Düşük pH; genellikle fenolikler ve PPO bulunmaz.
Askorbik Asit – Oksidasyon
Askorbik asit oksidaz – Renk değişiklikleri gözlenmez. Vitamin kaybı.
Sıcaklık, pH, ışık, oksijen ve ağır metal iyonları
Isıya duyarlı – haşlanma kayıpları
Diğer Oksidasyon Tepkimeleri
Hermetik kutular ve kavanozlar – Yüzeyde oksidasyon
Oksijen – Renk bozulmaları
Laklanmamış kutular – Kalay – İndirgen
Mantar konserveleri – Oksijen + Isı
CO2, N2 – Oksijenin uzaklaştırılması
Bitkisel kökenli oksidoredüktazlar – Lipoksigenaz
Diğer Oksidasyon Tepkimeleri – 2
Doymamış yağ asitleri – Mono-hidro peroksitler
Hidroksi peroksitler ve peroksi radikaller
Klorofil ve karotenoidler – Renk kayıpları
Hidroksiperoksitler – Uçucu bileşikler (Hidroperoksit liyaz)
Maillard Tepkimeleri
Enzimatik olmayan esmerleşmeler
Kurutulmuş meyve ve sebzeler – Renk değişimleri
Isıl işlem ve depolama (zamana bağlı)
İndirgen şeker aminler; Melanoidinler; Hidroksi metil furfural (HMF)
Daha çok sterilizasyon, kurutma gibi işlemlerde oluşur (yüksek aktivasyon enerjisi)
Serbest ve bağlı aminler
Maillard Tepkimeleri – 2
İndirgen şekerler – Glukoz, früktoz, maltoz, laktoz, diğer pentozlar
Lisin – Essansiyel amino asit kaybı
Isıl işlem görmüş meyve ve sebzeler ile kuru meyveler ve sebzeler gibi ürünler – Proses/kurutma/depolama
Isıl işlem (t,T) ile HMF arasında doğrusal ilişki bulunmaktadır.
Uzun süreli düşük sıcaklıklar – 40 °C (kayıplar artabilir)
Maillard – Önlemler/Özellikler
Kükürtleme
Hava almayan ambalaj
Kahverengi melanoidin pigmentleri
Aromalar – Fırıncılık / Diğerleri
Bitter tat ve lezzet bileşikleri – Kahve
Lisin, sistein, metionin azalır.
Mutajen bileşikler: Asparajin + şeker + 120 C – Kanserojen
Klorofillerde Değişmeler
Bezelye, fasulye, ıspanak – Haşlama (degradasyon)
Klorofil a ve klorofil b: feofitin a ve b – Kirli sarı
Bamya – asitli suda – yeşil rengin solması
Yoğun ısıl işlem – Feofitinin – pirofeofitine dönüşmesi
Antosiyaninlerde Değişmeler
Çilek, böğürtlen, vişne, kiraz, siyah üzüm, mor erik gibi meyveler, bazı koyu renkli sebzeler
Asit pH (kırmızı) – alkali pH (mavi)
Aglikon – Çok reaktif
Şeker, açil, metoksi – Çok fazla etkilenmezler.
Glikozid form – Isıyla parçalanma
Antosiyaninlerde Değişmeler – 2
Ilımlı ısıtma ve yeterli soğutma gereklidir.
O2, T, depolama süresi, HMF konsantrasyonu, askorbik asitten olumsuz etkilenme
Birinci dereceden degradasyon kinetiği
Karotenoidlerde Değişmeler
Nispeten ısıl direnci daha yüksek
Kırmızı biber – 125 C – 20 dakika – %8 kayıp
b-karoten – Pro-vitamin A – kartotenoid kayıplarının etkisi
Karotenoidler – çift bağlarda cis-trans izomerizasyonu
All trans → cis karotenoid – daha düşük miktarda provitamin A aktivitesi
Karotenoidlerde Değişmeler – 2
Vitamin A – %15-20 kayıp – yeşil sebzelerin pişirilmesi
Oksidatif degradasyon – Öğütülen biberde %40-55 kayıp
Yağ asitlerinin demir ve bakır gibi ağır metaller ya da ışık etkisiyle otokatalitik oksidasyonu sırasında oluşan serbest radikaller ile tepkimesi sonucudur. Lipoksigenaz da bu tepkimelere katılır.
Anti-karsinojenik (anti-oksidan): Uyarılmış oksijeni sönümlendirme; aktif radikallerle etkileşerek lipid peroksidasyonu tepkimelerini engelleme.
Karamelizasyon
Isı etkisiyle – şeker ve diğer karbonhidratlar
Parçalanma ve polimerizasyon
Farklı şekerler için farklı sıcaklıklar söz konusu (amino grubu gerekmiyor)

Reçel ve marmelatlarda sıklıkla görülür. Konservelerde daha az.
Hem renk, hem de aroma etkilenir.
Oluşan bileşikler: Sikloheksenolon, piron, dihidrofuranon, siklopentendon
Metallerin Etkisi
Demir – Sülfür – Demirsülfür – Moleküler formül?
H2S açığa çıkınca – H2S + Sn → Renkli bileşikler
Aynı şekilde, bakteriyel H2S de söz konusu olabilir (proteinlerin parçalanması).
Laklı ambalajlar – Et ve benzeri ürünler
Sn – Korozyon sonucu
H2S + Sn → SnS — antosiyaninler – donuk kırmızı renkli tuzlar
Metallerin Etkisi – 2
Bakır (Cu) – Oksidasyon katalizörü
Askorbik asidin parçalanması
Özellikle CuSO4 etkisiyle
NaCl parçalanmayı azaltmaktadır.
Ürün kesme makineleri – Örneğin 10 mg – Korozyon ve domates ürünlerinde bozulmalar
Vitamin Kayıpları
B1 – Kükürtleme işlemleri
http://www.kaim.gov.tr/kayisi_yetistiriciligi/15.html
Suda çözünen vitaminler – Isıtma ve soğutma
Özellikle C vitamini işleme ve depolamada kaybolur. Askorbik asit oksidaz
Riboflavin, b-karoten, niasin
Flavonoller – C vitaminini korur.
Aroma Maddeleri
İşlemede hem yeni bileşikler oluşur, hem de önceden bulunanların bir kısmı kaybolur.
Elmalarda – ester ve/veya alkol yapıda bileşikler bulunur.
Elma suları – Hidrolitik parçalanma – Asit + alkol
Soğukta depolanan elmalar – Alkol miktarı artar, aldehit miktarı azalır.
Portakal suyu/konsantresi – aroma bileşiklerinin oluşumu – bazen acımsı tat
Washington portakalı Portakal suyuna uygun değildir (dilakton limonin II oluşumu).
Glukoz – Fruktoz
D-glukoz
Aroma Maddeleri – 2
Raf ömrü – Aroma maddeleri ve duyusal özellikler
Depolama boyunca oluşan bileşikler (portakal suyu)
6 ay – Dekanol sürekli artar.
Heksanol ve oktanol – ilk 2 ayda artar, sonra yavaş yavaş azalır.
a-Terpeniol – doğrusal olarak artar.
Limonen ve linalool – zaman içinde azalır.
Tepkimeler neden hızlanır/durur/yavaşlar?

Meyve ve Sebzelerin Kurutulması ( İbrahim GÜLSEREN )

Meyve ve Sebzelerin Kurutulması
GIM 307 – Meyve Sebze Teknolojisi
İbrahim Gülseren, Ph.D.
Geçen Hafta
Oksidatif değişiklikler
Maillard reaksiyonu
Renk değişiklikleri (antosiyaninler, klorofiller, karotenoidler)
Karamelizasyon
Vitamin ve aroma kayıpları
SO2 – Gıdalarda Kullanımı
Mikroorganizmaların öldürülmesi (antimikrobiyal etki)
Görsel çekiciliğin sağlanması (genellikle rengin korunması)
Antioksidan koruma sağlanması (ransiditenin önlemesi)
Enzim inhibisyonu/inaktivasyonu (renk kayıplarının önlenmesi, olgunlaşmanın ve çürümenin geciktirilmesi)
Enzimatik olmayan renk kararmalarının önlenmesi
Meyvelerin olgunlaşmasında kullanılan maddeler: Etilen ile bazı ülkelerde sakıncaları da olmakla ve yasal olmayabilmekle birlikte kalsiyum karbür (karpit) – asetilen çıkışı
Kurutma – Amaçlar
Mikrobiyal bozulmaların önlenmesi
Reaksiyonların sınırlanması
Tat, koku, besin değeri korunması
Hacim azaltma, taşıma, depolama verimi
Gıdalardaki Suyun Dağılımı
Serbest su: Çözücü; muhafazada uzaklaştırılan su; bozulmanın ortamı.
Adsorbe su: Gıda bileşenlerinin ya da yapısal moleküllerin yüzeyi (%10-15)
Bağlı su: Yapılara girmiş ya da H bağları ile bağlanmış su (%3-5)
– Sedimentasyon, difüzyon ve viskozite deneylerinde bağlı olduğu molekülle ortak hareket eder.
– Çözücü olarak kullanılamaz.
– Diğer su moleküllerinden farklı özellikler gösterir.
Su Aktivitesi (Water activity, aw)
Termodinamik anlamda gıdadaki suyun denge buhar basıncının (P) aynı sıcaklıktaki saf suyun denge buhar basıncına (Po) oranına «su aktivitesi» denir. Sistemde var olan suyun, buharlaşabilme kapasitesi ile ilgilidir.
Hiç su içermeyen gıdalar için 0, saf su için 1.
0,9-1: Yüksek aw – En riskli gıda ürünleri (et, taze meyve, sebzeler, süt.
0,6-0,9: Orta aw – Riski azaltılmış gıda ürünleri (kuru meyveler, tuzlanmış balık)
≤ 0,6: Düşük aw – Az riskli gıda ürünleri (kakao, kraker, kuru gıdalar)
Mikroorganizmaların Gelişme Sınırları
Psikrometri
Gaz-buhar karışımlarının termodinamik özelliklerinin anlaşılması
Kurutmaya Bağlı Değişiklikler
Çözünür madde göçü
Kabuk oluşumu
Çekme
Boyut ve şekil değişiklikleri
Rehidrasyon kapasitesi
Kimyasal değişiklikler
Çözünür Madde Göçü
Suyun hareket yönü, suda çözünür maddelerin dağılımını etkiler.
Genellikle küçük moleküller daha rahat hareket eder.
Haşlanma ve kurutma: Hücre parçalanması – Daha büyük moleküller de geçirgen hale gelir.
Nem hareketi, genellikle merkezden yüzeye doğrudur.
Kompozisyon ve fiziksel özelliklerin dağılımı da etkilenir. Yüzeyde birikmeler görülebilir.
Gözenek, kılcal ve çatlaklar – Yüzeyde yapışmalar
Kabuk Oluşumu
Hızlı kurumaya bağlı oluşur.
Çözünür kuru madde miktarından da etkilenir.
Kalite kayıpları, kuruma hızının azalması
Su, kabuk tabakasının aşamaz.
İki aşamalı kuruma
Su dağılımı ve aw etkilenir.
Hal Değişiklikleri (State Changes)
Cama (camsı) geçiş (Glass transition) – İkinci dereceden değişiklikler (state changes)
Çekme
Cama geçiş sonuç yerel çekmeler görülebilir.
Bu durum da, meyve ve sebzelerin yığın yoğunluğunu etkiler.
Aksi halde, hacimsel değişiklikler, sadece uzaklaştırılan su miktarına bağlıdır.
Boyut ve Şekil Değişiklikleri
Kurutma başlarken turgor hali geçerlidir.
Kuruma ile su fazındaki çözünmüş madde yoğunlukları artar. Hücrelerden su kaybı olur.
Hacim kaybı ve şekil kaybı
Rehidrasyon Kapasitesi
Önemli rehidrasyon kayıpları (dondurarak kurutma dışında) söz konusudur.
Sebepler:
Hücre duvarının elastikliği (denatürasyon,
osmotik özelliklerin kaybı)
Nişastanın şişme (swelling) özelliği
Hücre ve dokuların kapiler yapısı kaybolur.
Patlatarak puf yapı kazandırma: Porozitenin
arttırılması.
Kapilarite (Capillarity)
Kurutmaya Bağlı Esmerleşme
Haşlanmadan kurutulma – Kurutma ve depolama sırasında oluşabilir.
Enzimatik ve enzimatik olmayan esmerleşmeler
SO2: Enzim inaktivasyonu; enzimatik olmayan esmerleşmelerin durdurulması
Renk kayıplarına ek olarak, aroma bileşikleri de kaybolabilir (hava akışı).
Aromaların geri kazanılması (örneğin, su buharı havayı karıştırıp aroma bileşiklerini yoğunlaştırma – https://www.google.com/patents/EP2509433A1?cl=en)
Osmotik Kurutma (Konsantrasyon)
Numunelerin yüksek konsantrasyonlu çözeltilere konulması
Numunelerden su kaybı; buna ek olarak, numunelerin çözünen maddeleri içine çekmesi (sonraki işlemlerde koruyabilir) – Enerji tasarrufu sağlayabilir.
Proses koşulları: 30-50 C – %70 su kaybı (ilk 3 saat)
Son olarak, üründeki çözünen maddeler de kaybolabilir
(vitamin, mineral).
Soru: Bu yöntemin dondurarak kurutma, hava ile kurutma gibi
yöntemlerden temel farkları nedir?
Osmotik Kurutma – 2
Meyveler: Çok zaman sakaroza konur.
Sebzeler: Sodyum klorür veya
sodyum klorür/sakaroz
Küçük moleküller – Yüksek osmotik etki
Yavaş su kaybı, çözünenler artar.
Büyük moleküller – Daha düşük osmotik etki
ama hızlı su kaybı
Ön işlem sayılabilir. Neden?
Kurutma Sistemleri
En etkin kurutma sistemlerinin, ürünün iç kısımları ile hava arasında en yüksek buhar basıncı ve sıcaklık farklarını yaratan sistemler olduğu, yapılan ısı ve kütle aktarımı analizlerine dayanarak söylenebilmektedir.
Kabin Kurutucular (Cabinet Dryer)
Kesikli çalışan sistemlerdir.
Etkili ısı transferi için, sıcak hava ürün yüzeyinden hızla geçirilmelidir.
Tekdüze ürün elde edilmesi zordur.
Tünel Kurutucular (Tunnel Dryer)
Sürekli (continuous) çalışabilen sistemlerdir.
Hava akışı ile vagon hareketi aynı ya da farklı yönlerde olabilir.
Ters akış etkin ama kaliteyi sınırlayabilir.
Enerji tasarrufu için çıkan hava geri beslenebilir.
Akışkan Yataklı Kurutucu (Fluidised Bed Drier)
Sürekli (continuous) çalışabilen sistemlerdir.
Hava akışı ile kurutulan malzemeler havada asılı halde kalır (belirli süre-sıcaklık profili izlenerek)
Küçük parçacıklar daha yavaş akış hızlarında akışkan hale getirilebilir.
Etkili bir teknoloji olmakla birlikte, her ürün için uygun olmaktadır.
Püskürtmeli Kurutucu (Spray Dryer)
Sürekli (continuous) çalışabilen sistemlerdir.
Sıvı gıdalar için uygundur.
Sıcak hava akışı ile kurutulan malzemeler, genellikle %5 nemin altında toplanır.
Evaporatif soğumaya bağlı olarak, numuneler yüksek kalite ve hızlı rehidrasyon kabiliyeti edinir.
Dondurarak Kurutma (Liyofilizasyon)
Genellikle kesikli çalışabilen sistemlerdir.
Ürün kalitesi ve yapısal özellikleri düşük sıcaklık ve vakum sayesinde korunmaktadır.
Süblimleşme esasına dayanır.
Evaporatif soğumaya bağlı olarak, numuneler yüksek kalite ve hızlı rehidrasyon kabiliyeti edinir.
Süblimleşme