Etiket Arşivleri: Energy

Buğday İşleme Fabrikasındaki İşlem Akışı ve Enerji Sarfiyatı ( Çiğdem KURT )

ÖZET

Bu araştırma 2011-2012 yılları arasında Edirne/Havsa ilçesi sınırları içinde Has Köy de bulunan bir Buğday işleme fabrikasında gerçekleştirilmiştir. Araştırmanın amacı; buğday işleme fabrikasında işlem akışını etkileyen faktörleri belirlemektir. Silodan gelen buğday Çöplerinden arındırılmak üzere elevatör yardımı ile Çöp Sasörüne gelmektedir. Çöp Sasöründe çöplerden temizlenmiş şekilde olan buğday elevatör yardımıyla triyöre gelmektedir. Triyörün içine gelen buğday taneleri kırıklarından ayrılır. Triyörde kırıklarından ayrılmış olan buğday kabuklarından ayrılmak üzere kabuk soyucusuna gelir. Kabuk soyucusundan gelen buğday Dik Yıkama Makinesinde vidalar yardımıyla su ile temas ederek yıkanmış olur. Dik Yıkama makinesinde su ile yıkanmış olan buğday öğütülmeden önce tavlanmaktadır. Buğdayı tavlamanın amacı buğday tanesinin yapısını öğütmeye en elverişli hale getirmektir. Tav Cihazından geçen buğday dinlendirilmek üzere ambarlara gelir. tekrar kabuk soyucusuna gelmekte ve daha sonra tekrar elevatör yardımıyla Valslere gelmektedir. Valslere gelen buğday kırma işlemine maruz kalarak tanenin kabuk ve embriyo kısımları endospermden ayrılmaktadır. Valslerde kabuğu endospermden uzaklaştırmak ve endospermi küçülterek una dönüştürmek asıl amaçtır. Kırma valslerinden hava akımı yardımı ile gelen irmikleri hem sınıflandırmak hem de temizlemek amacıyla irmik sasörüne gelmektedir. İrmik sasöründe temizlenen ve sınıflara ayrılan öğütülmüş buğday tekrar hava yardımı ile valslere gelmektedir. Valslere gelen öğütülmüş buğday hava yardımı ile eleklere gelmektedir. Eleklere gelen öğütülmüş buğday üç ayrı yan ürün olan Razmol, Bonkalit ve Kepeğe dönüşmektedir. Ayrıca bu arada tek ana ürün olan un ortaya çıkmaktadır. Buğday işleme fabrikasındaki enerji sarfiyatının hesaplanması sonucunda aşağıdaki verilere ulaşılmıştır. Buğday işleme fabrikasının elektrik sarfiyatını hesaplamak amacıyla fabrika içindeki tüm makineler 24 saat çalıştırılıp elektrik sayacında ilk okunan rakam ile son okunan rakam arasındaki fark 86,64 kW olduğu tespit edilmiştir. 86,64*120= 10.396,8 (buradaki 120 değeri enerji katsayısı olup enerji tüketiminin hesaplanmasında yardımcı olan katsayıdır). Elektrik sayacının bir tur döndüğünde harcanan elektrik miktarını göstermektedir. 10396,8*0,31= 3.223,008 TL elektrik tüketim fiyatıdır. 1 kW sanayide kullanılan elektrik enerji birim fiyatı 0,31 TL dir. Bir günde 120 ton buğday işlendiğine göre 3.223,008 TL elektrik enerjisi harcanmaktadır. 120 ton buğday işlenirken 3.223,008 TL enerji harcanıyor ise 1 ton buğday işlemek üzere 26,8584 TL elektrik enerjisi harcanmaktadır.

Anahtar kelimeler: Buğday, Un, Enerji

ABSTRACT

This research was carried out in 2011-2012 at one of wheat processing factory in Has Köy county of Edirne/Havsa. The aim of study was determine the factors effect to operation process of wheat processing factory. The wheat carried out by elevator from silo to grain separator for remove foreign substances. Cleaned or pure wheat’s come to trieur by wheat elevator. The grains of wheat’s separated from which broken are broken in the fractures. Pure wheat carried to peeler for grain peeling. Wheat would be washed in Vertical Washing Machine perpendicular by water after carried from the peeler. Wheat washed in Vertical Washing Machine, annealing before grinding. The aim of the annealing the structure of the wheat, grind the grain of wheat to make the most favorable. After the annealing processes, wheat comes back to stock units for resting. Wheat’s come back to grain peeler and then transfer to waltzes by elevator. Wheat grain crushing process from being exposed to every roll shell and the embryo is divided in parts of the endosperm. The main goal of this process, remove shell and reducing endosperm and transform to flour. For clean and the classification, semolina comes to semolina separator from the breaking waltz by air flow. The ground wheat cleaned and classified in semolina separator return to waltz by air flow. Ground wheat came to waltz by the air flow come in to sieves. The ground wheat in sieves transfer to three different by-products as Razmol, Bonkalite and Dandruff. In addition, the single main product is flour had been produced. . The results of the calculated of the energy consumption of the factory, the following data were obtained. In order to calculate energy consumption of wheat processing factory, the rule is accepted as the all machines in factory were working in 24 hour period of a day during the electricity meter was recorded the first and the last digits number. Then calculated differences between two groups and obtained as a 86,64 kW. 86,64*120= 10.396,8 (where 120 TL is the value of coefficient of energy that helps to calculate energy
consumption coefficient). Electricity meter shows the amount of electricity after one tour completed. 10396,8*0,31= 3.223,008 TL is the price of the electricity consumption. The unit price is 1 kW of electrical energy used in industry 0,31 TL. 3.223,008 TL based on 120 tons of wheat were handled in a day was spend on electricity. When spending of 3.223,008 TL for 120 tons wheat Processing, 26,8584 TL will spend for 1 ton of wheat.

Keywords : Wheat, Flour, Energy

1. GİRİŞ

1.1 Değirmen Hammaddesi: Buğday

1.2 Buğdayların Sınıflandırılması

1.2.1 Botaniksel Sınıflandırılma

1.2.2 Teknolojik Sınıflandırma

1.3 Dünyada ve Türkiye’de Buğday Üretimi

1.3.1 Dünya Buğday Üretimi

1.3.2 Türkiye Buğday Üretimi

1.4 Buğday Analizi ve Fiziksel Özellikleri

1.4.1 Buğdayın Kalitesi ve Kalite Kriterleri

1.4.2 Kalitenin Botaniksel Kriterleri

1.4.3 Kalitenin Fiziksel Kriterleri

1.4.3.1 Hacim Ağırlığı

1.4.3.2 Tane İriliği ve Şekli

1.4.3.3 Bin Tane Ağırlığı

1.4.3.4 Tane Sertliği

1.4.3.5 Camsılık

1.4.3.6 Renk

1.4.3.7 Yabancı Madde Miktarı

1.4.3.8 Öğütme Kalitesi

1.4.4 Kalitenin Kimyasal Kriterleri

1.4.4.1 Rutubet Miktarı

1.4.4.2 Protein Miktarı

1.4.4.3 Protein Kalitesi

1.4.4.4 Yağ Asitliği

1.4.4.5 Ham Lif ve Kül Miktarları

1.5 Buğdayların Sınıflandırılması ve Derecelendirilmesi

1.5.1 ABD Buğday Standardı

1.5.2 Avrupa Ekonomik Topluluğu Buğday Standardı

1.5.3 Türkiye Buğday Standardı

1.6 Buğday Kalitesinin Tayini

1.7 Araştırmanın Amacı

2. ÖNCEKİ ÇALIŞMALAR

3. MATERYAL VE YÖNTEM

3.1 Materyal

3.1.1 Buğday İşleme Fabrikası

3.1.1.1 Çöp Sasörü

3.1.1.2 Triyör

3.1.1.3 Kabuk Soyucu (Buğday Fırçası)

3.1.1.4 Hava Kanalı

3.1.1.5 Dik Yıkama Makinesi

3.1.1.6 Tav Cihazı

3.1.1.6.1 Buğdayların Tavlanması

3.1.1.7 Valsler

3.1.1.8 İrmik Sasörü

3.1.1.9 Elekler

3.2 Yöntem

3.2.1 Buğday Rutubetinin Ölçülmesi

3.2.2 Buğday İçerisindeki Yabancı Madde Oranlarının Belirlenmesi

3.2.3 Enerji Sarfiyatı’nın Tespiti

4. ARAŞTIRMA SONUÇLARI VE TARTIŞMA

4.1 Buğday İşleme İşlemlerinin Her Aşamasında Alınan Örneklerin İçerikleri ve Sonuçları

4.2 Enerji Tüketim

Kaynak: http://acikerisim.nku.edu.tr:8080/xmlui/bitstream/handle/20.500.11776/909/0040159.pdf?sequence=1&isAllowed=y

1st Law of Thermodynamics Heat Transfer

1st Law of Thermodynamics
Heat Transfer
Lecture 6 October 14, 2009
Review

GOES:  Geostationary Operational Environmental Satellite
Maintain constant altitude (~36,000 km) over a single point, always over the equator   Imagery is obtained approximately every 15 minutes  Generally has poor spatial resolution but good temporal resolution

•POES: Polar Operational Environmental Satellites
–circular orbit moving from pole to pole closer to the Earth (879 km) than GOES
–Sees the entire planet twice in a 24 hour period.
–Good Spatial Resolution: Lower altitude results in higher resolution images
–Poor Temporal Resolution: Over any point on Earth, the satellite only captures two images per day.

•Visible
–Measures visible light (solar radiation, 0.6 mm) which is reflected back to the satellite by cloud tops, land, and sea surfaces.
– Thus, visible images can only be seen during daylight hours!

•Infrared (IR)
–Displays infrared radiation (10 to 12 mm) emitted directly by cloud tops, land, or ocean surfaces.
– Wavelength of IR depends solely on the temperature of the object emitting the radiation
–Advantage: You can always see the IR satellite image

•Water Vapor (WV)
–Displays infrared radiation emitted by the water vapor (6.5 to 6.7 mm) in the atmosphere
–Can determine dry layers from moist layers in the atmosphere

RADAR
Radar uses electromagnetic radiation to sense precipitation.
Sends out a microwave pulse (wavelength of 4-10 cm) and listens for a return echo.
If the radiation pulse hits precipitation particles, the energy is scattered in all directions
The intensity of precipitation is measured by the strength of the echo, in units of decibels
Doppler Radar: can determine velocity as well as reflectivity

Energy
Energy is the ability or capacity to do work on some form of matter Work is done on matter when matter is either pushed, pulled, or lifted over some distance

Potential energy – how much work that an object is capable of doing PE = mgh

Kinetic energy – the energy an object possesses as a result of its motion KE = ½ mv2

Laws of Thermodynamics

1st Law of Thermodynamics – Energy cannot be created or destroyed.   Energy lost during one process must equal the energy gained during another

2nd Law of Thermodynamics – Heat can spontaneously flow from a hotter object to a cooler object, but not the other way around.  The amount of heat lost by the warm object is equivalent to the heat gained by the cooler object

First Law of Thermodynamics

Heat
Heat is a form of energy and is the total internal energy of a substance Therefore the 1st law states that heat is really energy in the process of being transferred from a high temperature object to a lower temperature object.
Heat transfer changes the internal energy of both systems involved
Heat can be transferred by:
Conduction
Convection
Advection
Radiation
Specific Heat
Heat capacity of a substance is the ratio of heat absorbed (or released) by that substance to the corresponding temperature rise (or fall) The heat capacity of a substance per unit mass is called specific heat.  Can be thought of a measure of the heat energy needed to heat 1 g of an object by 1ºC Different objects have different specific heat values 1 g of water must absorb about 4 times as much heat as the same quantity of air to raise its temperature by 1º C This is why the water temperature of a lake or ocean stays fairly constant during the day, while the temperature air might change more Because of this, water has a strong effect on weather and climate Latent Heat Latent heat is the amount of energy released or absorbed by a substance during a phase change

Example
1: Getting out of a swimming pool
•In the summer, upon exiting a swimming pool you feel cool. Why?
•Drops of liquid water are still on your skin after getting out.
•These drops evaporate into water vapor.  This liquid to gas phase change causes energy to be absorbed from your skin.

Example
2: Citrus farmers
•An orange crop is destroyed if temperatures drop below freezing for a few hours.
•To prevent this, farmers spray water on the orange trees. Why?
•When the temperature drops below 32oF, liquid water freezes into ice.
•This liquid to solid phase change causes energy to be released to the fruit.
•Thus, the temperature of the orange remains warm enough to prevent ruin.

Example
3: Cumulus clouds
•Clouds form when water vapor condenses into tiny liquid water drops.
•This gas to liquid phase change causes energy to be released to the atmosphere.

Types of Heat Transfer

Heat can be transferred by:
Conduction
Convection
Advection
Radiation

Conduction
Conduction is the transfer of heat from molecule to molecule within a substance Molecules must be in direct contact with each other. The measure of how well a substance can conduct heat depends on its molecular structure.  Air does not conduct heat very well This is why, in calm weather, the hot ground only warms the air near the surface a few centimeters thick by conduction!

Convection
Convection is the transfer of heat by the mass movement of a fluid (such as water and air) in the vertical direction (up and down) Convection occurs naturally in the atmosphere On a sunny day, the Earth’s surface is heated by radiation from the Sun. The warmed air expands and becomes less dense than the surrounding cold air.  Because the warmed air is less dense (weighs less) than cold air, the heated air rises. As the warm air rises, the heavier cold air flows toward the surface to replace the rising air. This cooler air becomes heated in turn and rises. The cycle is repeated. This vertical exchange of heat is called convection and the rising air parcels are known as thermals
The warm thermals cool as they rise.  In fact, the cooling rate as a parcel rises can be calculated
If the thermal consists of dry air, it cools at a rate of ~10°C/km as it rises. This is called the lapse rate.
Convection is one process by which clouds can form.  As the temperature of the thermal cools, it may reach a point where it reaches saturation (the temp. and dewpoint are the close to the same) Thermals condense and form a cloud.

Advection
Advection is the transfer of heat in the horizontal direction.   The wind transfers heat by advection Happens
frequently on Earth Two types:
Warm air advection (WAA): wind blows warm air toward a region of colder air
Cold air advection (CAA): wind blows cold air toward a region of warmer air

Radiation
All things with a temperature above absolute zero emit radiation Radiation allows heat to be transferred through wave energy These waves are called electromagnetic waves The
wavelengths of the radiation emitted by an object depends on the temperature of that object (i.e., the sun mainly emits radiative energy in the visible spectrum, and the earth emits radiative energy in the infrared spectrum). Shorter wavelengths carry more energy than longer wavelengths
A photon of ultra-violet radiation carries more energy than a photon of infrared radiation.  The shortest wavelengths in the visible spectrum are purple, and the longest wavelengths are red.

Kirchoff’s Law
Good absorbers of a particular  wavelength are good emitters at that wavelength and vice versa Our atmosphere has many selective absorbers Carbon Dioxide, Water Vapor, etc… These gases are good at absorbing IR radiation but not solar radiation Thus these gases are called greenhouse gases due to the fact they help to absorb and reemit IR radiation
back toward the Earth’s surface thus keeping us warmer then we would otherwise be
Solar Radiation Budget
Earth-Atmosphere
Energy Balance